
	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	1	of	50	

Adaptive Gateways for dIverse
muLtiple Environments

	

D2.1	
Core	requirements	specification	
and	IoT	protocol	integration	

Project	Acronym	 AGILE	

Project	Title	 Adaptive	Gateways	for	Diverse	Multiple	Environments	

Project	Number	 688088	

Work	Package	 WP	2	 Core	Module	Integration	&	
Gateway	SW	framework	development	

Lead	Beneficiary	 RN	

Editor	 Georgios	Michalakidis	 Operations	Director,	Resinio	Ltd	

Reviewer	1	 Paolo	Azzoni	 	 Research	Programme	Manager,	
Eurotech	

Reviewer	2	 Philippe	Krief	 	 Research	Relations	Director,	
Eclipse	

Reviewer	3	 Prof	Alexander	Felfernig	 Graz	University	of	Technology	

Dissemination	Level	 PU	

Contractual	Delivery	Date	 30/06/2016	

Actual	Delivery	Date	 30/06/2016	–	Resubmission	26/10/2016	

Version	 V1.1	

Ref. Ares(2016)6136496 - 26/10/2016

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	2	of	50	

Abstract

This	report	forms	part	of	the	contractual	deliverables	of	the	AGILE	H2020	EC-funded	project.	It	
documents	the	results	from	the	analysis	of	available	IoT	Standards	and	protocols	(for	IoT	and	
Machine-to-Machine	communication)	that	will	be	 integrated	within	AGILE	for	maximising	the	
connected	 device	 support	 and	 interoperability.	 Support	 of	 the	 selected	 protocols	 (for	
integration	in	various	layers	such	as	the	operating	system,	device	management	and	the	user-
space)	 is	 assessed	 for	 features	 such	 as	 device	 discovery,	 communication	 and,	 additionally,	
utilisation	of	external	protocols	(e.g.	for	messaging).	

In	addition,	the	deliverable	illustrates	a	process	for	auto-configuring	hardware	modules	within	
the	gateway,	focusing	on	the	configuration	steps	required	during	the	deployment	of	the	gateway	
and	on	 the	 resource	 optimisation	 at	 runtime.	 This	will	 allow	 the	AGILE	 gateway	 to	 be	 auto-
configured	based	on	the	application	context	and	user	preferences.	A	preliminary	mechanism	to	
implement	the	configurator	service	is	documented	herein.	A	more	detailed	documentation	of	
the	 configuration,	 will	 be	 presented	 in	 deliverable	 D2.2	 (initial	 version	 of	 Gateway	 Self-	
configuration,	IoT	Device	discovery	&	Remote	gateway	management).	

	

	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	3	of	50	

Document	History	

Version	 Date	 Comments	

V0.1	 01/06/2016	 First	Draft	

V0.2	 10/06/2016	 Amendments	–	Section	inclusion	

V0.3	 20/06/2016	 Amendments	–	Section	inclusion	

V0.4	 24/06/2016	 Review	and	suggestions	

V0.9	 28/06/2016	 Final	draft	after	reviewers’	comments	

V1.0	 30/06/2016	 Deliverable	ready	for	submission	

V1.0.1	 24/10/2016	 Details	 are	 inserted	 under	 Section-1	 for	 review	
comment	 “D2.1	 is	 to	 be	 revised	 to	 include	 a	 brief	
introduction	 of	 the	 AGILE	 Configurator	 specifically	
addressing	 its	 adaptation	 to	 the	 overall	
architecture.”	

V1.0.2	 25/10/2016	 Review	

V1.1	 25/10/2016	 Deliverable	ready	for	resubmission	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	4	of	50	

Table of Contents

1	 AGILE	Configurator	...	9	

1.1	 Configurator	Engine	..	12	

1.1.1	 Ramp-up	Configuration	..	13	

1.1.2	 Resource	Optimisation	...	17	

2	 Analysis	and	Integration	of	IoT	Standards	..	20	

2.1	 Connectivity	Protocols	..	20	

2.1.1	 Evaluation	Criteria	..	20	

2.1.2	 Protocol	Selection	...	21	

2.2	 Messaging	Protocols	...	27	

2.2.1	 Evaluation	Criteria	..	27	

2.2.2	 Protocol	Selection	...	27	

2.3	 Data	Encoding	Protocols	...	30	

2.3.1	 Evaluation	Criteria	..	30	

2.3.2	 Protocol	Selection	...	30	

2.4	 Remote	Management	Protocols	...	33	

2.4.1	 Evaluation	Criteria	..	33	

2.4.2	 Protocol	Selection	...	33	

2.5	 Security	Protocols	and	Standards	...	37	

2.5.1	 Evaluation	Criteria	..	37	

2.5.2	 Protocol	and	Standard	Selection	..	37	

2.6	 Full-Stack	Standards	..	40	

2.6.1	 Evaluation	Criteria	..	40	

2.6.2	 Standard	Selection	..	40	

3	 Report	Conclusion	..	43	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	5	of	50	

Appendix	A	–	Protocols	and	Standards	in	IoT	..	44	

Connectivity	Protocols	...	44	

Messaging	Protocols	..	45	

Remote	Management	Protocols	..	46	

Data	Encoding	Protocols	..	47	

Security	Protocols	...	48	

Full-Stack	Protocols	..	49	

	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	6	of	50	

List of Figures

Figure	1	Recommender	and	Configurator	Services	..	10	

Figure	2	Online	Recommender	and	Configurator	Services	are	shown	in	yellow	boxes	in	the	
AGILE	Cloud	Services	Architecture	...	10	

Figure	3	Configurator	Service	is	shown	as	the	yellow	box	in	the	AGILE	Gateway	Architecture	.	11	

	

	
	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	7	of	50	

List of Tables

Table	1	–	Example	of	configuration	log	..	17	

Table	2	–	Utility	table:	evaluation	of	configurations	with	regard	to	the	interest	dimensions	
performance,	reliability,	and	costs	...	18	

Table	3	–	Example	of	user	preferences	w.r.t.	interest	dimensions	performance,	reliability,	and	
costs	...	18	

Table	4	–	Overview	of	AGILE	research	objectives	..	19	

	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	8	of	50	

Acronyms

Acronym	 Meaning	

H2020	 Horizon	2020	

EC	 European	Commission	

AGILE	 Adaptive	Gateways	for	dIverse	multiple	Environments	

IoT	 Internet-of-Things	

WP	 Work	Package	

RN	 Resinio	Limited	

PU	 Public	Dissemination	

OS	 Open	Source	

	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	9	of	50	

1 AGILE Configurator

The	AGILE	configuration	services	support	other	AGILE	services	and	AGILE	users	in	determining	
consistent	 settings	 (configurations)	 that	 make	 the	 overall	 gateway	 environment	 operable.	
Examples	of	configuration	scenarios	are	discussed	in	the	following	paragraphs.	

Differentiation	between	the	terms	“recommender“	and	“configurator“:	
Recommendation	functionalities	are	used	to	recommend	specific	items	(e.g.,	apps,	devices,	and	
cloud	services)	 to	users	of	 the	AGILE	environment	 (e.g.,	a	user	of	a	smarthome	environment	
based	 on	 AGILE	 can	 receive	 recommendations	 regarding	 interesting	 apps	 that	 could	 be	
additionally	installed,	a	user	of	health	tracking	devices	can	receive	recommendations	regarding	
to	 step	 tracker	 or	 pulse/blood	 pressure	 monitoring	 applications).	 The	 determination	 of	
recommendations	is	based	on	recommendation	algorithms	such	as	collaborative	and	content-
based	 filtering.	 Configuration	 functionalities	 are	 used	 to	 determine	 configurations	 (i.e.,	
combinations	 of	 items	 that	 satisfy	 a	 given	 set	 of	 constraints	 -	 e.g.,	 gateway	 hardware	
configurations	for	a	specific	application	domain	or	gateway	profile	configurations	–	some	related	
examples	will	be	provided	in	the	following	paragraphs).	

	
Architecture	and	Integration	of	AGILE	Configurators:	

AGILE	will	have	two	configurators	which	are	(1)	a	“Resource	Optimisation	Configurator”	and	(2)	
a	“Ramp-up	Configurator”	(see	the	Figure.1).	
	
Figure.1	 gives	 an	 overview	 of	 all	 the	 recommender	 and	 configurator	 services	 which	 are	
developed	 for	 AGILE.	 There	 are	 four	 recommendation	 services	 (app/workflow/device/cloud	
service)	 and	 one	 configuration	 service	 (ramp-up)	 on	 the	 server	 side	 and	 one	 configuration	
service	(resource	optimisation)	on	the	gateway	side.	 	Figure.2	shows	AGILE	configuration	and	
recommendation	services	on	the	server	side	as	part	of	the	overall	AGILE	architecture.	Figure.3	
shows	 the	 integration	 of	 the	 Resource	 Optimisation	 Configurator	 in	 the	 overall	 AGILE	
architecture.	It	provides	a	restful	API	on	the	AGILE	gateway’s	static	server	that	can	be	accessed	
by	the	other	AGILE	services.	

	
	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	10	of	50	

	

Figure	1	Recommender	and	Configurator	Services	 	

	
	
	

	

Figure	2	Online	Recommender	and	Configurator	Services	are	shown	in	yellow	boxes	in	the	

AGILE	Cloud	Services	Architecture		

	
	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	11	of	50	

	

Figure	3	Configurator	Service	is	shown	as	the	yellow	box	in	the	AGILE	Gateway	Architecture	

	
The	 ramp-up	 configurator	will	 run	 on	 the	 server	 side	 as	 a	web	 application	 (see	 Figure.2)	 to	
support	AGILE	users	with	regard	to	environmental	settings	(e.g.,	which	and	how	many	sensors	
should	 be	 used	 and	 where	 to	 locate	 these	 and	 which	 apps	 should	 be	 used).	 The	 resource	
optimisation	configurator	(“auto	configuration”)	will	run	on	the	gateway	as	an	AGILE	service	on	
the	restful	API	(see	Figure.3).	 It	can	be	activated	on	the	basis	of	 information	provided	by	the	
AGILE	 Device	 Manager	 or	 Component	 Manager.	 According	 to	 predefined	 constraints	 and	
resources	 (apps	 and	 devices)	 on	 the	 gateway,	 it	 will	 determine	 (re-)	 configurations	 (e.g.,	
enabling,	 disabling	 devices	 and	 changing	 the	 network	 protocol	 etc.).	 The	 CSP	 (Constraint	
Satisfaction	 Problem)	 Solver	 “Choco”	 (choco-solver.org)	 will	 be	 used	 by	 AGILE	 Services	 to	
determine	 needed	 adaptations	 (reconfigurations)	 in	 the	 gateway	 profile.	 The	
Resource		Optimisation	Configurator	 itself	 is	not	 in	charge	of	executing	reconfigurations.	This	
will	be	done	by	the	AGILE	Services	that	activate	the	Resource		Optimisation	Configurator.	
	
	
AGILE	Configurator	use	cases:	

Resource	Optimisation	Configurator	is	triggered	by	AGILE	services	such	as	Device	Manager	or	
Component	 Manager.	 Potential	 triggers	 include	 the	 following:	 "New	 App	 is	
installed/uninstalled",	"New	IoT	Device	is	plugged/unplugged",	"New	Network	Enabler	Device	is	
plugged/unplugged",	 "New	 driver	 is	 installed/uninstalled",	 "Memory	 Consumption	 is	
increased/decreased	10%",	"CPU	Consumption	is	increased/decreased	10%"	and	"Power	Mode	
is	changed".	 In	such	cases,	the	Resource	Optimisation	Configurator	can	be	triggered	by	other	
AGILE	 Services	 to	 recalculate	 the	 best	 possible	 (re-)configuration.	Depending	 on	 the	defined	
knowledge	 base	 (represented	 as	 a	 constraint	 satisfaction	 problem	 describing	 properties	 of	
network	and	data	encoding	protocols),	some	or	all	of	the	mentioned	scenarios	can	be	supported	
by	the	configurator.	The	main	aim	of	the	configurator	is	to	optimise	the	resource	allocation	on	
the	 AGILE	 gateway	 taking	 into	 account	 the	 preferences	 related	 to	 "Memory/CPU/Power	
Consumption".	Example	input	data	for	the	configurator	includes:		

• Gateway	Profile	Information:	for	example,	current	Memory/CPU/Power	consumption,	
installed	apps,	connected	IoT	devices,	and	network	enabler	devices		

• User	Preferences:	for	example,	power	saving	mode	should	be	enabled/disabled.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	12	of	50	

Ramp-up	Configurator	is	a	web	application	which	is	used	by	AGILE	users.	It	will	be	running	as	
standalone	 on	 TU	 Graz	 server.	 Ramp-up	 Configurator	 can	 support	 users	 by	 providing	 the	
configuration	recommendations	such	as	which	sensors	to	use,	how	many	sensors	to	use,	where	
to	place	them,	etc.	We	will	support	Pilot-C	with	this	configurator.	Later	on,	other	pilots	also	can	
generate	 their	 own	 constraints	 for	 the	 Ramp-up	 Configurator	 to	 be	 able	 to	 support	 their	
customers	 as	well.	 Pilot	 application	owners	will	 have	an	admin	access	 right	 to	manage	 their	
constraints	on	the	system.	

The	Ramp-up	Configurator	 is	a	standalone	web	application	which	is	used	by	AGILE	users	(see	
Figure.1	and	Figure.2).	This	Configurator	can	support	users	by	providing	the	configurations	such	
as	“which	sensors	to	use”,	“how	many	sensorsensors	to	use”,	or	“where	to	place	them”.	We	
selected	Pilot-C	(Air	Quality	&	Pollution	Monitoring)	as	a	use	case	for	this	configurator.	Later	on,	
other	AGILE-based	scenarios	can	exploit	the	configurator	for	supporting	the	ramp-up	process.	

1.1 Configurator Engine

The	Configurator	Engine	is	an	AGILE	module	responsible	for	the	calculation	of	the	constraints	
and	 inconsistencies	of	the	AGILE	Gateway	configuration	and	for	providing	a	possible	solution	
accordingly.	The	Configurator	Engine	of	AGILE	will	be	responsible	for	two	main	functionalities:	
the	"Ramp-up	Configuration"	and	the	"Resource	Optimisation".	

The	Ramp-up	Configuration,	provides	the	optimum	set-up	configuration	of	the	AGILE	Gateway	
depending	on	the	environment,	the	application	and	the	user	preferences.	A	very	simple	scenario	
that	illustrates	this	role	is	the	Smart	Home	Configuration:	

The	 configurator	 takes	 into	 account	 the	 specific	 features	 of	 the	 living	 environment	 a	 user	 is	
planning	the	smart	home	system	for.	To	support	users	initial	installation	of	smart	home	devices,	
Configurator	interactively	asks	to	the	user	about	his	preferences.	First	of	all,	the	user	enters	the	
dimensions	and	features	of	his	house	(floors,	garden,	size,	#	of	rooms,	etc.)	Then	the	Configurator	
also	asks	some	specific	questions	and	get	user	preferences.	

According	to	all	the	information	collected	about	the	home	and	user	preferences,	the	configurator	
calculates	conflicts	and	finds	the	best	suitable	option	for	the	user	requirements	and	provides	the	
results.	For	example:	"According	to	your	preferences	and	home	features,	wireless	systems	would	
be	less	expensive.	Wired	system	would	cost	around	3000	dollars.	"	

The	Resource	 Optimisation,	 provides	 the	 optimum	 setting	 of	 the	 gateway	 according	 to	 the	
gateway	 profile	 (available	 Memory,	 CPU,	 power	 source,	 etc.).	 For	 example,	 it	 may	
enable/disable	the	network	modules	according	to	the	optimisation	strategy.		

This	deliverable	illustrates	the	technologies	that	will	be	adopted	for	the	design	and	development	
of	the	configurator,	the	definition	of	the	configuration	process	and	the	description	on	how	it	
applies	 to	 the	 pilots.	 The	 requirements	 identified	 during	 the	 pilot	 analysis	 (WP8)	 has	 been	
considered	during	the	technologies	study	and	during	the	design	of	the	configuration	process:	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	13	of	50	

this	 approach	 ensures	 that	 the	 configuration	module	 satisfies	 the	 practical	 requirements	 of	
vertical	application.	

In	the	following	sections,	the	“Smart	Home	Configuration”	is	used	as	an	example	to	easily	and	
clearly	explain	the	functionalities	and	capabilities	of	the	ramp-up	configurator.	

1.1.1 Ramp-up Configuration

AGILE	 gateways	 will	 be	 deployed	 in	 different	 domains	 such	 as	 health	 monitoring,	 animal	
monitoring	in	wildlife	areas,	air	quality	and	pollution	monitoring,	enhanced	retail	services,	smart	
homes,	and	port	area	monitoring.	Each	application	scenario	requires	a	pre-configuration	which	
estimates	the	needed	hardware	and	software	components/devices	to	be	deployed	in	the	ramp-
up	phase	of	the	system.	We	denote	this	type	of	configuration	ramp-up	configuration	since	each	
scenario	requires	a	specific	set	of	hardware	components	and	software	components	(including	
apps)	to	”ramp-up”	the	system.	

	

Pilot	Scenario:	Air	Quality	and	Pollution	Monitoring		

Environmental	pollution	has	become	an	issue	of	serious	international	concern	and	is	increasingly	
stimulating	 the	development	and	adoption	of	solutions	 to	monitor	and	reduce	the	effects	of	
pollution.	 This	 is	 an	 interesting	 and	 challenging	 market,	 with	 both	 potential	 economical	
outcomes	and	a	strong	societal	impact.	

Environmental	 monitoring	 has	 a	 long	 history	 of	 methodologies	 and	 technological	 solutions,	
unfortunately	 characterised	 by	 high	 development	 and	 maintenance	 costs,	 low	 territorial	
coverage	 and	 complex	 certifications:	 these	 barriers	 have	 confined	 the	 diffusion	 of	 high-end	
monitoring	 solutions	 to	 a	 limited	 set	 of	 vertical	 context,	 typically	 managed	 by	 the	 public	
authorities.	

The	convergence	of	hardware	integration,	reduction	of	sensor	costs,	IoT	and	M2M	technologies	
introduces	a	new	panorama	where	it	is	really	possible	to	deliver	low	cost,	high	quality	monitoring	
systems	 with	 a	 capillary	 coverage	 of	 the	 territory.	 This	 convergence	 leads	 to	 a	 new	 era	 of	
solution	for	environmental	pollution	monitoring.	

The	importance	of	the	pollution	monitoring	domain,	inspired	AGILE	project	to	focused	one	of	
the	pilots	on	this	topic.	The	pilot	is	responsible	to	deliver	an	AGILE	based	solution	for	air	quality	
and	pollution	monitoring	in	industrial	and	public	environments.	The	pilot	is	based	on	a	network	
of	monitoring	stations,	based	on	the	AGILE	platform,	that	provides	multimodal,	multisource	and	
pervasive	monitoring	of	air	quality	and	pollution.	The	pervasive	nature	of	this	solution	is	based	
on	EDC,	a	cloud	integration	platform	from	Eurotech,	that	cooperates	with	the	AGILE	platform	to	
provide	final	user	and	B2B	services.	

Air	 quality	 and	 pollution	 monitoring	 stations	 are	 complex	 systems	 that,	 depending	 on	 the	
application	 context,	 deliver	 added	 value	 pollution	 monitoring	 services	 based	 on	 a	 delicate	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	14	of	50	

equilibrium	 between	 the	 adoption	 of	 the	 most	 appropriate	 sensors,	 their	 correlation,	 the	
selection	 of	 the	 correct	 algorithms	 and	 the	 configuration	 of	 their	 hardware	 and	 software	
parameters.	 A	 wrong	 or	 imprecise	 selection	 and	 configuration	 of	 these	 elements	 leads	 to	
misleading,	wrong	and	completely	useless	results	and	services.	

The	configuration	process	is	fundamental	for	the	entire	lifecycle	of	the	monitoring	station,	from	
the	design	and	assembly	phases,	to	the	deployment	of	the	system,	to	the	day	by	day	operation,	
to	the	maintenance.	Depending	on	the	specific	deployment	context,	it	is	fundamental	to	ensure	
the	correct	configuration	of	the	hardware	and	software	components	of	the	monitoring	station	
in	each	of	these	lifecycle	phases.	

Furthermore,	 If	the	configuration	process	 is	assisted	or	automatic,	 it	enables	a	real	pervasive	
territorial	monitoring	that,	with	the	current	technologies	and	costs,	will	remain	for	a	long	time	
a	mirage:	the	massive	diffusion	of	a	low	cost-high	quality	pollution	monitoring	solution,	with	a	
pervasive	and	intelligent	nature,	will	have	an	important	environmental	and	societal	impact.	

During	the	design	and	assembly	phase	the	configurator	provides	support	for	the	dimensioning	
of	 the	 monitoring	 station,	 selection	 of	 sensors,	 pre-processing	 algorithms,	 environmental	
positioning	 and	 installation	 procedure.	 In	 this	 phases,	 it	 simplifies	 the	 cooperation	 between	
sales	and	customer	during	the	requirements	analysis,	the	identification	of	the	final	design	and	
the	definition	of	the	commercial	offer.	R&D	engineers	are	supported	in	the	validation	of	the	final	
design	of	the	monitoring	station.	Also	the	company	that	will	be	responsible	for	the	maintenance	
activities	 has	 an	 important	 role	 in	 this	 phase,	 because	 it	 provides	 to	 the	 configurator	
fundamental	 information	 related	 the	maintenance	plan:	 the	maintenance	 costs	 are	a	 critical	
aspect	 that	 is	 currently	 responsible	 for	 the	 limited	 diffusion	 of	 the	 pollution	 monitoring	
technologies.	 In	 these	 phases	 the	 configurator	 collects	 information	 about	 the	 deployment	
environment,	the	type	of	 installation,	the	available	power	source,	the	monitoring	profile,	the	
application	domain,	etc..	Analysing	this	information,	the	configurator	automatically	defines	the	
configuration	of	the	final	design	of	the	monitoring	station.	Furthermore,	during	the	assembly	
phase,	it	supports	the	operator	in	assembling	the	monitoring	station.	

During	 the	 deployment	 phase,	 the	 configurator	 assists	 the	 operator	 in	 the	 installation	 and	
configuration	process.	In	this	phase,	the	configurator	is	responsible	for	the	identification	of	the	
correct	configuration	of	the	networking	and	sensing	modules	of	the	monitoring	station,	of	the	
sensors	 calibration,	 of	 the	 configuration	 of	 the	 pre-processing	 algorithms,	 of	 the	 operating	
system	modules	and	of	the	AGILE	platform	configuration.	

Finally,	at	runtime,	during	day	by	day	operation,	the	configurator	is	fundamental	to	support	and	
ensure	the	adaptive	behaviour	of	the	monitoring	station.	During	this	phase	of	the	lifecycle,	the	
configurator	significantly	contributes	to	the	autonomy	of	the	monitoring	station	providing	the	
configuration	 information	 required	 for	 periodical	 runtime	 calibration,	 dynamic	 configuration	
required	by	context	changes,	operation	monitoring	and	maintenance	support.	During	day	by	day	
operation,	 the	 configurator	 collects	 the	 required	 information	 autonomously	 from	 the	 live	
knowledge	based	stored	in	the	monitoring	station.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	15	of	50	

	

Other	AGILE	Scenarios	

The	AGILE	project	explores	the	adoption	of	the	AGILE	platform	in	other	challenging	scenarios:	
health	monitoring,	wild	life	monitoring,	enhanced	retail	services	and	port	area	monitoring.	

The	basic	task	of	a	configurator	in	health	monitoring	is	to	figure	out	which	measuring	devices	
are	 needed	 (including	 their	 parametrisation)	 in	 order	 to	 monitor	 and	 analyse	 specific	 body	
functions.		

In	the	wild	life	monitoring	scenario	it	is	important	to	figure	out	which	infrastructure	can	be	used	
to	 complete	 predefined	 data	 collection	 tasks	 for	 the	 monitored	 animals.	 In	 such	 scenarios,	
reachability	of	animals	 (and	corresponding	sensors)	plays	a	major	 role	 in	order	 to	be	able	 to	
complete	data	 collection.	 Reachability	 depends	on	 the	 selected	drone	 types	but	 also	on	 the	
selected	communication	protocols	which	have	different	degrees	of	power	consumption.		

Enhanced	 retail	 services,	 that	 allow	 a	 personalised	 shopping	 experience	 in	 physical	 stores,	
requires	configuration	functionality	that	provides	an	indication	of	the	amount	and	positioning	
of	 sensors	 (e.g.,	 for	 indoor	 position	 detection)	 and	 of	 displays,	 devices	 that	 are	 needed	 to	
successfully	support	customers	in	their	shopping	experience.	

In	 the	 port	 area	 monitoring	 scenario,	 configuration	 technologies	 are	 needed	 to	 drive	 the	
selection	of	relevant	sensors	(e.g.,	gas,	radioactivity,	and	water	quality	sensors)	that	are	able	to	
provide	the	required	data.		

	

Knowledge	Acquisition	&	Representation	

The	 configuration	 process	 relies	 on	 the	 knowledge	 acquired	 from	 the	 user	 to	 suggest	 a	
configuration.	Therefore,	knowledge	acquisition	and	representation	represents	two	important	
factors	for	this	AGILE	module.	In	AGILE,	we	will	evaluate	the	applicability	of	different	types	of	
configuration	knowledge	 representations	 such	as	 answer	 set	programs	 (ASP)	 and	 constraint-
based	representations.	Our	aim	is	to	identify	a	knowledge	representation	language	that	can	be	
applied	for	each	of	the	different	application	scenarios	in	order	to	provide	a	basic	technology	for	
supporting	IoT	ramp-up	configuration	tasks.	The	applicability	of	these	languages	will	be	primarily	
evaluated	 with	 regard	 to	 expressiveness	 and	 reasoning	 efficiency.	 Especially,	 ASP-based	
configuration	approaches	will	be	evaluated	with	regard	to	their	applicability	in	typical	gateway	
ramp-up	scenarios.	

When	 configuring,	 for	 example,	 smart	 homes,	 the	 configuration	model	 includes	 information	
about	the	relationships	between	building	properties	and	corresponding	sensors	(e.g.,	if	a	room	
is	a	kitchen	and	includes	an	oven,	then	a	corresponding	temperature	sensor	has	to	be	included	
for	the	room)	or	between	user	preferences	and	the	corresponding	technical	infrastructure	(e.g.,	
if	a	user	wants	to	save	money,	wireless	communication	is	preferred).	A	configuration	for	a	given	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	16	of	50	

configuration	task	includes	information	about	which	components,	devices,	and	drivers	are	part	
of	the	initial	gateway	installation.	

	

Consistency	Management	of	the	Knowledge	Base	

A	configuration	Knowledge	Base	can	become	 inconsistent,	 i.e.,	 the	defined	component	types	
and	constraints	lead	to	the	problem	that	no	solution	can	be	identified.	Such	a	situation	can	occur	
in	the	context	of	regression	testing	but	also	in	situations	where	the	conflict	is	 induced	by	the	
configuration	 knowledge	 base	 itself.	 In	 such	 scenarios,	 configuration	 technologies	 in	
combination	with	model-based	diagnosis	can	be	exploited	to	automatically	identify	the	sources	
(e.g.,	constraints)	of	a	given	inconsistency.	Such	functionalities	will	be	included	in	a	development	
environment	for	IoT	configuration	knowledge	bases.	

In	the	context	of	AGILE,	we	focus	on	the	development	of	techniques	that	help	to	improve	the	
efficiency	of	configuration	knowledge	engineering	processes.	Although	automated	debugging	is	
a	useful	means	to	reduce	time	efforts	related	knowledge	base	development	and	maintenance,	
the	 development	 and	 maintenance	 of	 related	 test	 cases	 is	 still	 costly.	 We	 will	 analyse	 the	
applicability	of	different	testing	approaches	from	software	engineering	and	will	especially	focus	
on	 the	development	of	mutation	 testing	 approaches	 for	 knowledge	bases.	 In	 this	 context,	 a	
mutation	will	serve	as	a	basis	for	generating	tests	that	are,	for	example,	accepted	by	the	original	
knowledge	base	but	should	not.	

	

Consistency	Management	of	User	Requirements	

Consistency	management	not	only	plays	a	role	in	the	context	of	knowledge	base	development	
and	maintenance	 but	 also	 within	 the	 scope	 of	 a	 configuration	 process.	 A	 user	 of	 an	 AGILE	
configurator	 could	 articulate	 a	 set	 of	 requirements	 in	 such	 a	 way	 that	 no	 solution	 can	 be	
identified.	

Also	in	such	a	situation,	model-based	diagnosis	approaches	can	be	exploited	to	indicate	sets	of	
user	requirements	that	have	to	be	adapted	in	order	to	identify	at	least	one	solution.	A	similar	
situation	 occurs	 in	 the	 context	 of	 reconfiguration,	 i.e.,	 in	 a	 situation	 where	 hardware	 and	
software	components	of	an	IoT	gateway	have	to	be	adapted.	In	this	context,	minimal	changes	
have	to	be	proposed	that	indicate	how	the	existing	configuration	has	to	be	adapted	such	that	a	
consistent	 configuration	 can	 be	 determined,	 taking	 into	 account	 all	 reconfiguration	
requirements.	

In	AGILE,	we	focus	on	the	development	of	personalisation	techniques	that	help	to	improve	the	
diagnosis	prediction	quality,	i.e.,	to	identify	those	diagnoses	that	will	be	accepted	by	the	user.	
Such	personalised	diagnoses	will	be	determined	on	the	basis	of	an	analysis	of	the	interaction	
behaviour	of	users	of	similar	gateway	installations	(available	in	gateway	profile	repositories).	In	
this	context	we	will	develop	learning-based	approaches	that	help	to	calibrate	search	heuristics	
in	order	to	improve	efficiency	and	prediction	quality	of	configuration	and	reconfiguration.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	17	of	50	

A	simple	example	of	our	envisioned	approach	is	the	following.	Let	us	assume	the	existence	of	a	
configuration	log	as	the	one	shown	in	Table	1.	The	parameters	reqi	indicate	user	requirements	
and	xi	 indicate	 technical	product	parameter	 settings	 (consistent	with	 the	user	 requirements)	
accepted	by	the	user	UI.	The	overall	goal	is	to	optimise	the	configurator	search	heuristics	(e.g.,	
variable	 and	 domain	 orderings)	 in	 such	 a	 way	 that	 the	 prediction	 quality	 for	 the	 technical	
parameter	 settings	 is	maximised.	More	 precisely,	we	want	 to	 identify	 search	 heuristics	 that	
guide	to	solutions	(configurations)	that	will	be	accepted	by	the	current	user.	User	interactions	
(see,	e.g.,	Table	1)	serve	as	a	basis	for	learning.	Prediction	quality	can	be	measured,	for	example,	
in	terms	of	the	user	acceptance	degree	of	parameter	settings	(configurations)	proposed	by	the	
configurator.	 In	 this	 context	 we	 will	 evaluate	 different	 clustering	 techniques,	 i.e.,	 to	 learn	
heuristics	not	on	a	global	level,	but	depending	on	a	specific	cluster	derived,	for	example,	from	
the	user	requirements.		

Table	1	–	Example	of	configuration	log	

1.1.2 Resource Optimisation

Modern	embedded	systems	included	in	IoT	scenarios	support	a	rich	set	of	connectivity	solutions	
(e.g.,	3G,	LTE,	TD-LTE,	FDD-LTD,	WIMAX,	and	Lora).	In	this	context,	configuration	technologies	
play	an	important	role	in	terms	of	suggesting	optimal	connectivity	configurations.	

In	 AGILE,	 runtime	 configuration	must	 be	 performed	 on	 the	 gateway	 –	 in	 contrast,	 ramp-up	
configuration	can	also	take	place	in	the	cloud.	On	the	one	hand	we	will	evaluate	different	types	
of	 reasoning	 engines,	 for	 example,	 the	 CHOCO	 constraint	 solver	 and	 the	 Sat4j	 boolean	
satisfaction	library.	We	will	also	take	into	account	the	application	of	rule	engines,	optimisation	
libraries,	and	knowledge	compression	techniques	to	assure	efficiency	of	problem	solving	on	the	
gateway	level.	

A	 simplified	 example	 of	 the	 application	 of	 a	 utility-based	 approach	 is	 the	 following.	 Table	 2	
includes	an	evaluation	of	connectivity	protocol	configurations	conf	(confa	and	confb)	to	be	used	
on	 the	 gateway,	 for	 example,	 for	 different	 types	 of	 data	 exchange.	 The	 three	 evaluation	
dimensions	used	in	this	example	are	performance,	reliability,	and	costs.	Furthermore,	Table	3	
includes	the	personal	preferences	of	two	different	gateway	users	(u1	and	u2).		

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	18	of	50	

	

Table	2	–	Utility	table:	evaluation	of	configurations	with	regard	to	the	interest	dimensions	

performance,	reliability,	and	costs	

	

	

Table	3	–	Example	of	user	preferences	w.r.t.	interest	dimensions	performance,	reliability,	

and	costs	

In	order	to	determine	the	configuration	that	should	be	chosen	for	a	specific	user,	we	can	apply	
a	utility	function	(see,	e.g.,	the	following	formula). 	

	

In	 this	 context,	 utility(conf,u)	 denotes	 the	 utility	 of	 the	 configuration	 conf	 for	 the	 user	 u,	
interest(u,d)	denotes	the	interest	of	user	u	in	evaluation	dimension	d,	and	value(conf,u)	denotes	
the	contribution	of	configuration	conf	to	the	interest	dimension	d.	In	the	example,	configuration	
confa	has	a	higher	utility	for	user	u1	(107:0)	whereas	configuration	confb	has	a	higher	utility	for	
u2	(111:0).	Note	that	for	simplicity	we	omitted	to	sketch	the	determination	of	the	evaluations	
depicted	in	Table	2.	In	order	to	increase	the	efficiency	of	runtime	configuration,	we	will	evaluate	
knowledge	compression	techniques	that	help	to	reduce	search	efforts	as	much	as	possible.	For	
example,	we	will	apply	decision	diagram	techniques	to	pre-calculate	possible	configurations	and	
re-configurations.	

Table	4	provides	a	summary	of	the	configuration-related	research	objectives	in	AGILE.	Within	
the	 context	 of	 ramp-up	 configuration	 scenarios	 we	 will	 identify	 knowledge	 representation	
mechanisms	that	allow	an	easy	representation	of	the	AGILE	IoT	domains	introduced.		

Furthermore,	 we	 will	 develop	 test	 case	 generation	 techniques	 that	 will	 help	 to	 make	 the	
development	and	management	of	test	cases	more	efficient.	For	AGILE	scenarios,	we	will	develop	
concepts	 that	 support	 the	 learning	 of	 search	 heuristics	 to	 optimise	 configuration	 and	
reconfiguration	processes.	Furthermore,	we	will	work	on	knowledge	compression	techniques	
that	help	to	make	solution	search	on	the	gateway	level	as	efficient	as	possible.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	19	of	50	

	

Table	4	–	Overview	of	AGILE	research	objectives	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	20	of	50	

2 Analysis and Integration of IoT Standards

This	chapter	aims	at	giving	an	overview	of	the	IoT/M2M	standards	and	protocols	that	will	be	
integrated	and	supported	within	 the	AGILE	Platform	during	 the	project	or	by	 the	developers	
community.	

Protocols	and	standards	have	been	classified	in	6	different	categories:	

● Connectivity	Protocols	
● Messaging	Protocols	
● Data	Encoding	Protocols	
● Remote	management	Protocols	
● Security	Protocols	and	Standards	
● Full-stack	Standards	

	

For	 each	 category,	matching	 criteria	 have	 been	 identified	 to	 help	 identify	 the	 strengths	 and	
weaknesses	of	each	protocol/standard.	

A	detailed	comparative	study	of	each	protocol/standard	with	regard	to	the	identified	criteria	is	
documented	in	the	Appendix.	

2.1 Connectivity Protocols

The	main	 goal	 of	 AGILE	 is	 to	 enable	 various	 types	 of	 devices	 (wearables,	 home	 appliances,	
sensors,	actuators,	etc.)	to	be	connected	with	each	other	and	to	the	Internet.	Therefore,	 it	 is	
critical	 that	 the	partners	 select	 the	 connectivity	protocols	 that	will	maximise	 the	number	of	
assets	that	can	be	part	of	the	AGILE	ecosystem.	

2.1.1 Evaluation Criteria

The	following	criteria	have	been	adopted	for	the	selection	of	the	connectivity	protocols:	

● Wired	or	wireless	

● Topology	 /	 LAN	 vs.	 WAN:	 Some	 connectivity	 standards	 may	 be	 more	 suited	 for	
implementing	the	communication	between	an	AGILE	gateway	and	a	cloud	infrastructure,	while	
others	are	more	appropriate	for	inter-asset	or	inter-gateway	communication.	AGILE	will	need	to	
support	both	kind	of	scenarios.	

● Max	range:	There	are	cases,	in	particular	in	the	“Open	field	&	cattle	monitoring”	pilot,	
where	an	AGILE	gateway	will	be	located	very	far	away	from	sensors.	Therefore	it’s	important	to	
get	 a	 good	 understanding	 of	 the	 typical	 range	 for	 each	 connectivity	 protocol.	 For	 wireless	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	21	of	50	

protocols,	 a	 difference	 should	 be	 made	 between	 range	 for	 indoors	 scenario	 vs.	 “line	 of	
sight”/outdoors	situations.	

● Max	 throughput:	 The	 maximum	 throughput	 of	 a	 connectivity	 protocol	 is	 often	
correlated	to	the	maximum	range.	A	throughput	in	the	range	of	megabytes	per	second	might	be	
desirable	for	transferring	video	streams,	while	a	few	kilobytes	per	second	might	be	ample	for	
simple	telemetry	use	cases.	

● Security:	 Some	 connectivity	 protocols	 (typically	 the	 ones	 corresponding	 to	 industrial	
protocols	that	have	been	retrofitted	for	IoT)	have	no	security	mechanism	at	the	transport	level.	
It	may	not	be	an	issue	for	some	use	cases	(wired,	with	the	operator	being	in	full	physical	control	
of	the	solution),	but	we	believe	that	it	is	important	to	favour	those	protocols	that	make	it	more	
difficult	to	eavesdrop,	impersonate	assets,	etc.	

2.1.2 Protocol Selection

Driven	by	the	previous	criteria,	the	selection	process	allowed	the	identification	of	the	following	
connectivity	protocols:	

6LoWPAN	

Link:	https://en.wikipedia.org/wiki/6LoWPAN	

6LoWPAN	is	an	acronym	of	IPv6	over	Low-Power	Wireless	Personal	Area	Networks.	

The	6LoWPAN	group	has	defined	encapsulation	and	header	compression	mechanisms	that	allow	
IPv6	packets	to	be	sent	and	received	over	IEEE	802.15.4	based	networks.	

The	 target	 for	 IP	networking	 for	 low-power	 radio	 communication	 are	 applications	 that	need	
wireless	internet	connectivity	at	lower	data	rates	for	devices	with	very	limited	form	factor.	An	
example	 is	 automation	 and	 entertainment	 applications	 in	 home,	 office	 and	 factory	
environments.	The	header	compression	mechanisms	standardised	in	RFC6282	can	be	used	to	
provide	header	compression	of	IPv6	packets	over	such	networks.	

IPv6	is	also	in	use	on	the	smart	grid	enabling	smart	meters	and	other	devices	to	build	a	micro	
mesh	network	before	sending	the	data	back	to	the	billing	system	using	the	IPv6	backbone.	

802.15.4	

Link:	https://en.wikipedia.org/wiki/IEEE_802.15.4	

IEEE	802.15.4	is	a	standard	created	and	maintained	by	consultants	which	specifies	the	physical	
layer	and	media	access	control	for	low-rate	wireless	personal	area	networks	(LR-WPANs).	

It	is	the	basis	for	the	ZigBee,	ISA100.11a,	WirelessHART,	MiWi,	and	Thread	specifications,	each	
of	which	further	extends	the	standard	by	developing	the	upper	layers	which	are	not	defined	in	
IEEE	802.15.4.	Alternatively,	 it	 can	be	used	with	6LoWPAN	as	Network	Adaptation	Layer	and	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	22	of	50	

standard	Internet	protocols	and/or	IETF	RFCs	defining	the	upper	layers	with	proper	granularity	
to	build	a	wireless	embedded	Internet.	

IEEE	 standard	 802.15.4	 intends	 to	 offer	 the	 fundamental	 lower	 network	 layers	 of	 a	 type	 of	
wireless	 personal	 area	 network	 (WPAN)	 which	 focuses	 on	 low-cost,	 low-speed	 ubiquitous	
communication	between	devices.	 It	 can	be	contrasted	with	other	approaches,	 such	as	Wi-Fi,	
which	 offer	 more	 bandwidth	 and	 require	 more	 power.	 The	 emphasis	 is	 on	 very	 low	 cost	
communication	of	nearby	devices	with	little	to	no	underlying	infrastructure,	intending	to	exploit	
this	to	lower	power	consumption	even	more.	

The	basic	framework	conceives	a	10-meter	communications	range	with	a	transfer	rate	of	250	
kbit/s.	Tradeoffs	are	possible	to	favor	more	radically	embedded	devices	with	even	lower	power	
requirements,	through	the	definition	of	not	one,	but	several	physical	layers.	Lower	transfer	rates	
of	20	and	40	kbit/s	were	initially	defined,	with	the	100	kbit/s	rate	being	added	in	the	current	
revision.	

IEEE	802.15.4-conformant	devices	may	use	one	of	three	possible	frequency	bands	for	operation	
(868/915/2450	MHz).	

Bluetooth	4.0	

Link:	https://en.wikipedia.org/wiki/Bluetooth#Bluetooth_v4.0	

The	 Bluetooth	 SIG	 completed	 the	 Bluetooth	 Core	 Specification	 version	 4.0	 (called	 Bluetooth	
Smart)	and	has	been	adopted	as	of	30	June	2010.	It	includes	Classic	Bluetooth,	Bluetooth	high	
speed	and	Bluetooth	low	energy	protocols.	Bluetooth	high	speed	is	based	on	Wi-Fi,	and	Classic	
Bluetooth	consists	of	legacy	Bluetooth	protocols.	

The	 key	 new	 feature	 of	 Bluetooth	 4.0	 is	 its	 low-energy	 technology.	 This	 lets	 device	
manufacturers	replace	proprietary	sensor	technology	with	Bluetooth,	which	 is	a	more	widely	
adopted	standard.	An	obvious	example	is	in	the	health	and	fitness	category.	Most	pedometers,	
heart	rate	straps,	and	blood	glucose	monitors	are	designed	to	only	talk	to	a	specific	wristwatch	
or	control	unit.	If	these	same	devices	had	Bluetooth	4.0,	they	could	speak	to	any	Bluetooth	4.0	
device,	be	it	phone	or	computer,	without	requiring	an	intermediary.	

Bluetooth	Smart	(BLE)	

Link:	https://en.wikipedia.org/wiki/Bluetooth_low_energy	

Bluetooth	low	energy	(Bluetooth	LE,	BLE,	marketed	as	Bluetooth	Smart)	is	a	wireless	personal	
area	network	technology	designed	and	marketed	by	the	Bluetooth	Special	Interest	Group	aimed	
at	 novel	 applications	 in	 the	 healthcare,	 fitness,	 beacons,	 security,	 and	 home	 entertainment	
industries.	Compared	to	Classic	Bluetooth,	Bluetooth	Smart	is	intended	to	provide	considerably	
reduced	power	consumption	and	cost	while	maintaining	a	similar	communication	range.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	23	of	50	

Bluetooth	 Smart	was	originally	 introduced	under	 the	name	Wibree	by	Nokia	 in	 2006.	 It	was	
merged	 into	 the	main	 Bluetooth	 standard	 in	 2010	with	 the	 adoption	 of	 the	 Bluetooth	 Core	
Specification	Version	4.0.	

Mobile	operating	systems	including	iOS,	Android,	Windows	Phone	and	BlackBerry,	as	well	as	OS	
X,	Linux,	and	Windows	8,	natively	support	Bluetooth	Smart.	The	Bluetooth	SIG	predicts	that	by	
2018	more	than	90	percent	of	Bluetooth-enabled	smartphones	will	support	Bluetooth	Smart.	

enOcean	

Link:	https://en.wikipedia.org/wiki/EnOcean		

The	EnOcean	technology	is	an	energy	harvesting	wireless	technology	used	primarily	in	building	
automation	 systems,	 and	 is	 also	 applied	 to	 other	 applications	 in	 industry,	 transportation,	
logistics	 and	 smart	 homes.	 Modules	 based	 on	 EnOcean	 technology	 combine	 micro	 energy	
converters	 with	 ultra	 low	 power	 electronics,	 and	 enable	 wireless	 communications	 between	
battery-less	wireless	sensors,	switches,	controllers	and	gateways.	

The	 energy	 harvesting	 wireless	 modules	 are	 manufactured	 and	 marketed	 by	 the	 company	
EnOcean	which	is	based	in	Oberhaching,	Germany.	EnOcean	offers	its	technology	and	licenses	
for	the	patented	features	within	the	EnOcean	Alliance	framework.	

EnOcean-based	products	(such	as	sensors	and	light	switches)	perform	without	batteries	and	are	
engineered	to	operate	maintenance-free.	The	radio	signals	from	these	sensors	and	switches	can	
be	transmitted	wirelessly	over	a	distance	of	up	to	300	meters	in	the	open	and	up	to	30	meters	
inside	buildings.	Early	designs	from	the	company	used	piezo	generators,	but	were	later	replaced	
with	electromagnetic	energy	sources	to	reduce	the	operating	force	(3.5	newtons),	and	increase	
the	service	life	to	100	operations	a	day	for	more	than	25	years.	

EnOcean	wireless	data	packets	are	relatively	small,	with	the	packet	being	only	14	bytes	long	and	
are	 transmitted	 at	 125	 kbit/s.	 RF	 energy	 is	 only	 transmitted	 for	 the	 1's	 of	 the	 binary	 data,	
reducing	 the	amount	of	power	 required.	Three	packets	are	 sent	at	pseudo-random	 intervals	
reducing	 the	possibility	of	RF	packet	 collisions.	Modules	optimised	 for	 switching	applications	
transmit	additional	data	packets	on	release	of	push-button	switches,	enabling	other	 features	
such	as	light	dimming	to	be	implemented.[2]	The	transmission	frequencies	used	for	the	devices	
are	902	MHz,	928.35	MHz,	868.3	MHz	and	315	MHz.	

Ethernet	

Link:	https://en.wikipedia.org/wiki/Ethernet	

Ethernet	is	a	family	of	computer	networking	technologies	commonly	used	in	local	area	networks	
(LANs)	and	metropolitan	area	networks	 (MANs).	 It	was	commercially	 introduced	 in	1980	and	
first	standardised	in	1983	as	IEEE	802.3,	and	has	since	been	refined	to	support	higher	bit	rates	
and	 longer	 link	 distances.	 Over	 time,	 Ethernet	 has	 largely	 replaced	 competing	 wired	 LAN	
technologies	such	as	token	ring,	FDDI	and	ARCNET.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	24	of	50	

The	original	10BASE5	Ethernet	uses	coaxial	cable	as	a	shared	medium,	while	the	newer	Ethernet	
variants	use	twisted	pair	and	 fibre	optic	 links	 in	conjunction	with	hubs	or	switches.	Over	 the	
course	of	 its	history,	Ethernet	data	transfer	rates	have	been	 increased	from	the	original	2.94	
megabits	per	 second	 (Mbit/s)	 to	 the	 latest	100	gigabits	per	 second	 (Gbit/s),	with	400	Gbit/s	
expected	by	late	2017.	The	Ethernet	standards	comprise	several	wiring	and	signalling	variants	
of	the	OSI	physical	layer	in	use	with	Ethernet.	

Systems	communicating	over	Ethernet	divide	a	stream	of	data	into	shorter	pieces	called	frames.	
Each	frame	contains	source	and	destination	addresses,	and	error-checking	data	so	that	damaged	
frames	can	be	detected	and	discarded;	most	often,	higher-layer	protocols	trigger	retransmission	
of	lost	frames.	As	per	the	OSI	model,	Ethernet	provides	services	up	to	and	including	the	data	link	
layer.	

KNX	

Link:	https://en.wikipedia.org/wiki/KNX_%28standard%29	

KNX	is	a	standardised	(EN	50090,	ISO/IEC	14543),	OSI-based	network	communications	protocol	
for	building	automation.	KNX	is	the	successor	to,	and	convergence	of,	three	previous	standards:	
the	European	Home	Systems	Protocol	(EHS),	BatiBUS,	and	the	European	Installation	Bus	(EIB	or	
Instabus).	

The	standard	is	based	on	the	communication	stack	of	EIB	but	enlarged	with	the	physical	layers,	
configuration	modes	and	application	experience	of	BatiBUS	and	EHS.	

KNX	defines	several	physical	communication	media:	

● Twisted	pair	wiring	(inherited	from	the	BatiBUS	and	EIB	Instabus	standards)	
● Powerline	networking	(inherited	from	EIB	and	EHS	-	similar	to	that	used	by	X10)	
● Radio	(KNX-RF)	
● Infrared	
● Ethernet	(also	known	as	EIBnet/IP	or	KNXnet/IP)	

KNX	is	designed	to	be	independent	of	any	particular	hardware	platform.	A	KNX	Device	Network	
can	be	controlled	by	anything	from	an	8-bit	microcontroller	to	a	PC,	according	to	the	needs	of	a	
particular	implementation.	The	most	common	form	of	installation	is	over	twisted	pair	medium.	

LoRa	

Link:	https://en.wikipedia.org/wiki/LPWAN	

LoRa,	proprietary,	CSS	modulation	technology	used	for	LPWAN	patented	by	Semtech	by	LoRa	
Alliance	used	by	LoRaWAN	and	Symphony	Link.	

Low-Power	Wide-Area	Network	 (LPWAN)	 or	 Low-Power	Network	 (LPN)	 is	 a	 type	 of	wireless	
telecommunication	 network	 designed	 to	 allow	 long	 range	 communications	 at	 a	 low	 bit	 rate	
among	things	(connected	objects),	such	as	sensors	operated	on	a	battery.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	25	of	50	

NB-IoT	

Narrow-Band	IOT	(NB-IOT)	is	a	technology	being	standardised	by	the	3GPP	standards	body.	This	
technology	is	a	narrowband	radio	technology	specially	designed	for	the	Internet	of	Things	(IoT),	
hence	its	name.	Special	focus	of	this	standard	are	on	indoor	coverage,	low	cost,	long	battery	life	
and	large	number	of	devices.	This	technology	can	be	deployed	in	GSM	and	LTE	spectrum.	

Near	Field	Communication	(NFC)	

Link:	https://en.wikipedia.org/wiki/Near_field_communication	

Near	field	communication	(NFC)	is	a	set	of	communication	protocols	that	enable	two	electronic	
devices,	 one	 of	 which	 is	 usually	 a	 portable	 device	 such	 as	 a	 smartphone,	 to	 establish	
communication	by	bringing	them	within	4	cm	(2	in)	of	each	other.	

NFC-enabled	portable	devices	can	be	provided	with	apps,	for	example	to	read	electronic	tags	or	
make	 payments	 when	 connected	 to	 an	 NFC-compliant	 apparatus.	 Earlier	 close-range	
communication	used	technology	that	was	proprietary	to	the	manufacturer,	for	applications	such	
as	stock	ticket,	access	control	and	payment	readers.	

“Raw”	RF	

The	Industrial,	Scientific	and	Medical	(ISM)	unlicensed	frequency	bands	below	1	GHz	are	widely	
used	 by	 wireless	 communication	 systems.	 So-called	 sub-gigahertz	 RF	 wireless	 solutions	 are	
usually	very	low	cost,	and	allow	to	setup	simple	unicast	communication	scenarios.	

RS-232	

Link:	https://en.wikipedia.org/wiki/RS-232		

In	telecommunications,	RS-232	is	a	standard	for	serial	communication	transmission	of	data.	It	
formally	 defines	 the	 signals	 connecting	 between	 a	DTE	 (data	 terminal	 equipment)	 such	 as	 a	
computer	 terminal,	 and	 a	 DCE	 (data	 circuit-terminating	 equipment	 or	 data	 communication	
equipment),	such	as	a	modem.	The	RS-232	standard	is	commonly	used	in	computer	serial	ports.	
The	standard	defines	the	electrical	characteristics	and	timing	of	signals,	the	meaning	of	signals,	
and	the	physical	size	and	pinout	of	connectors.	

RS-485	

Link:	https://en.wikipedia.org/wiki/RS-485		

RS-485	enables	the	configuration	of	inexpensive	local	networks	and	multidrop	communications	
links.	It	offers	data	transmission	speeds	of	35	Mbit/s	up	to	10	m	and	100	kbit/s	at	1200	m.	Since	
it	uses	a	differential	balanced	 line	over	 twisted	pair	 (like	RS-422),	 it	 can	span	 relatively	 large	
distances	up	to	1,200	m	(4,000	ft).	A	rule	of	thumb	is	that	the	speed	in	bit/s	multiplied	by	the	
length	in	meters	should	not	exceed	108.	Thus	a	50	meter	cable	should	not	signal	faster	than	2	
Mbit/s.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	26	of	50	

In	contrast	 to	RS-422,	which	has	a	 single	driver	circuit	which	cannot	be	switched	off,	RS-485	
drivers	need	to	be	put	in	transmit	mode	explicitly	by	asserting	a	signal	to	the	driver.	This	allows	
RS-485	to	implement	linear	bus	topologies	using	only	two	wires.	The	equipment	located	along	a	
set	of	RS-485	wires	are	interchangeably	called	nodes,	stations	or	devices.	

Sigfox	

Sigfox	is	a	wireless	communication	protocol	that	uses	frequencies	in	the	unlicensed	ISM	band	
(915MHz	 in	the	US,	868	MHz	 in	Europe)	 to	send	very	small	amounts	of	data	 (12	bytes),	very	
slowly	(300	baud)	using	standard	radio	transmission	methods	(phase-shift	keying).		

Wi-Fi	

Link:	https://en.wikipedia.org/wiki/Wi-Fi		

Wi-Fi	or	WiFi	is	a	technology	that	allows	electronic	devices	to	connect	to	a	wireless	LAN	(WLAN)	
network,	mainly	using	the	2.4	gigahertz	(12	cm)	UHF	and	5	gigahertz	(6	cm)	SHF	ISM	radio	bands.	
Access	 to	a	WLAN	 is	usually	password	protected,	but	may	be	open,	which	allows	any	device	
within	its	range	to	access	the	resources	of	the	WLAN	network.	

Devices	 which	 can	 use	Wi-Fi	 technology	 include	 personal	 computers,	 video-game	 consoles,	
smartphones,	 digital	 cameras,	 tablet	 computers	 and	 digital	 audio	 players.	 Wi-Fi	 compatible	
devices	can	connect	to	the	Internet	via	a	WLAN	network	and	a	wireless	access	point.	Such	an	
access	point	(or	hotspot)	has	a	range	of	about	20	meters	(66	feet)	indoors	and	a	greater	range	
outdoors.	Hotspot	coverage	can	be	as	small	as	a	single	room	with	walls	that	block	radio	waves,	
or	as	large	as	many	square	kilometres	achieved	by	using	multiple	overlapping	access	points.	

Zigbee	

Link:	https://en.wikipedia.org/wiki/ZigBee	

ZigBee	is	an	IEEE	802.15.4-based	specification	for	a	suite	of	high-level	communication	protocols	
used	to	create	personal	area	networks	with	small,	low-power	digital	radios.	

The	technology	defined	by	the	ZigBee	specification	is	intended	to	be	simpler	and	less	expensive	
than	other	wireless	personal	area	networks	(WPANs),	such	as	Bluetooth	or	Wi-Fi.	Applications	
include	 wireless	 light	 switches,	 electrical	 meters	 with	 in-home-displays,	 traffic	 management	
systems,	 and	 other	 consumer	 and	 industrial	 equipment	 that	 requires	 short-range	 low-rate	
wireless	data	transfer.	

Its	 low	 power	 consumption	 limits	 transmission	 distances	 to	 10–100	 meters	 line-of-sight,	
depending	on	power	output	and	environmental	characteristics.	ZigBee	devices	can	transmit	data	
over	long	distances	by	passing	data	through	a	mesh	network	of	intermediate	devices	to	reach	
more	distant	ones.	ZigBee	is	typically	used	in	low	data	rate	applications	that	require	long	battery	
life	and	secure	networking	(ZigBee	networks	are	secured	by	128	bit	symmetric	encryption	keys.)	
ZigBee	has	a	defined	rate	of	250	kbit/s,	best	suited	for	intermittent	data	transmissions	from	a	
sensor	or	input	device.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	27	of	50	

2.2 Messaging Protocols

On	 top	 of	 the	 connectivity	 protocols	 are	messaging	 protocols	 that	 aim	 at	 enabling	 unicast,	
multicast	and	broadcast	kind	of	communications	between	things/devices.	In	AGILE,	we	want	to	
rely	on	messaging	protocols	that	are	broadly	adopted	(ecosystem	of	users	and	developers),	and	
that	are	open.		

	

2.2.1 Evaluation Criteria

The	following	criteria	have	been	adopted	for	the	selection	of	the	messaging	protocols:	

● Discovery	support:	Does	the	messaging	protocol	include	discovery	mechanisms	(e.g.	for	
an	asset/sensor	to	discover	its	gateway,	or	for	an	asset/sensor	to	discover	its	“neighbours”).	

● Security	
● Open	source	community:	The	messaging	protocol(s)	used	in	an	IoT	solution	control	how	

easy	it	is	for	third	parties	to	integrate	with	it.	It	is	important	to	evaluate	the	messaging	protocols	
supported	 in	 AGILE	 according	 to	 the	 number	 (and	 activity)	 of	 open	 source	 implementations	
available	for	these	protocols.		

● Open	standard:	Is	the	standard	open	and	royalty-free.	
● Whether	or	not	they	are	used	in	existing	commercial	solutions	

	

2.2.2 Protocol Selection

Driven	by	the	previous	criteria,	the	selection	process	allowed	the	identification	of	the	following	
messaging	protocols.	

CoAP	

Link:	https://en.wikipedia.org/wiki/Constrained_Application_Protocol	

Constrained	 Application	 Protocol	 (CoAP)	 is	 a	 software	 protocol	 intended	 to	 be	 used	 in	 very	
simple	electronics	devices	that	allows	them	to	communicate	interactively	over	the	Internet.	It	is	
particularly	targeted	for	small	low	power	sensors,	switches,	valves	and	similar	components	that	
need	to	be	controlled	or	supervised	remotely,	through	standard	Internet	networks.	CoAP	is	an	
application	layer	protocol	that	is	intended	for	use	in	resource-constrained	internet	devices,	such	
as	WSN	nodes.	CoAP	is	designed	to	easily	translate	to	HTTP	for	simplified	integration	with	the	
web,	while	also	meeting	specialised	requirements	such	as	multicast	support,	very	low	overhead,	
and	simplicity.	Multicast,	low	overhead,	and	simplicity	are	extremely	important	for	Internet	of	
Things	(IoT)	and	Machine-to-Machine	(M2M)	devices,	which	tend	to	be	deeply	embedded	and	
have	much	 less	memory	and	power	supply	than	traditional	 internet	devices	have.	Therefore,	
efficiency	is	very	important.	CoAP	can	run	on	most	devices	that	support	UDP	or	a	UDP	analogue.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	28	of	50	

The	CoRE	group	has	designed	CoAP	with	the	following	features	in	mind:	

● Overhead	and	parsing	complexity.	
● URI	and	content-type	support.	
● Support	for	the	discovery	of	resources	provided	by	known	CoAP	services.	
● Simple	subscription	for	a	resource,	and	resulting	push	notifications.	
● Simple	caching	based	on	max-age.	

The	mapping	of	CoAP	with	HTTP	is	also	defined,	allowing	proxies	to	be	built	providing	access	to	
CoAP	resources	via	HTTP	in	a	uniform	way.	

With	the	introduction	of	CoAP,	a	complete	networking	stack	of	open	standard	protocols	that	are	
suitable	for	constrained	devices	and	environments,	becomes	available.	

Modbus	

Link:	https://en.wikipedia.org/wiki/Modbus	

Modbus	 is	a	serial	communications	protocol	originally	published	by	Modicon	(now	Schneider	
Electric)	in	1979	for	use	with	its	programmable	logic	controllers	(PLCs).	Simple	and	robust,	it	has	
since	become	a	de	facto	standard	communication	protocol,	and	it	is	now	a	commonly	available	
means	of	connecting	industrial	electronic	devices.	The	main	reasons	for	the	use	of	Modbus	in	
the	industrial	environment	are:	

● developed	with	industrial	applications	in	mind	
● openly	published	and	royalty-free	
● easy	to	deploy	and	maintain	
● moves	raw	bits	or	words	without	placing	many	restrictions	on	vendors	

Modbus	 enables	 communication	 among	many	 devices	 connected	 to	 the	 same	 network,	 for	
example	a	system	that	measures	temperature	and	humidity	and	communicates	the	results	to	a	
computer.	Modbus	is	often	used	to	connect	a	supervisory	computer	with	a	remote	terminal	unit	
(RTU)	in	supervisory	control	and	data	acquisition	(SCADA)	systems.	Many	of	the	data	types	are	
named	from	its	use	in	driving	relays:	a	single-bit	physical	output	is	called	a	coil,	and	a	single-bit	
physical	input	is	called	a	discrete	input	or	a	contact.	

	

MQTT	

Link:	https://en.wikipedia.org/wiki/MQTT		

MQTT	 (formerly	 MQ	 Telemetry	 Transport)	 is	 an	 ISO	 standard	 (ISO/IEC	 PRF	 20922)	 publish-
subscribe	based	"light	weight"	messaging	protocol	for	use	on	top	of	the	TCP/IP	protocol.	 It	 is	
designed	for	connections	with	remote	locations	where	a	"small	code	footprint"	is	required	or	
the	network	bandwidth	is	limited.	The	publish-subscribe	messaging	pattern	requires	a	message	
broker.	The	broker	is	responsible	for	distributing	messages	to	interested	clients	based	on	the	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	29	of	50	

topic	of	a	message.	Andy	Stanford-Clark	and	Arlen	Nipper	of	Cirrus	Link	Solutions	authored	the	
first	version	of	the	protocol	in	1999.	

There	 are	 several	 MQTT	 brokers	 available	 such	 as	 ActiveMQ,	 Apollo,	 HiveMQ,	 IBM	
MessageSight,	JoramMQ,	Mosquitto,	RabbitMQ,	Solace	Message	Routers,	and	VerneMQ.	They	
vary	in	their	feature	set	and	some	of	them	implement	additional	features	on	top	of	the	standard	
MQTT	functionality.	

MQTT	defines	methods	(sometimes	referred	to	as	verbs)	to	 indicate	the	desired	action	to	be	
performed	on	the	identified	resource.	What	this	resource	represents,	whether	pre-existing	data	
or	data	that	is	generated	dynamically,	depends	on	the	implementation	of	the	server.	Often,	the	
resource	corresponds	to	a	file	or	the	output	of	an	executable	residing	on	the	server.	

● Connect:	Waits	for	a	connection	to	be	established	with	the	server.	
● Disconnect:	Waits	for	the	MQTT	client	to	finish	any	work	it	must	do,	and	for	the	TCP/IP	

session	to	disconnect.	
● Subscribe:	Waits	for	completion	of	the	Subscribe	or	UnSubscribe	method.	
● UnSubscribe:	Requests	the	server	unsubscribe	the	client	from	one	or	more	topics.	
● Publish:	Returns	immediately	to	the	application	thread	after	passing	the	request	to	the	

MQTT	client.	

MQTT-SN	

Link:	http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf	

MQTT-SN	is	designed	to	be	as	close	as	possible	to	MQTT,	but	is	adapted	to	the	peculiarities	of	a	
wireless	communication	environment	such	as	low	bandwidth,	high	link	failures,	short	message	
length,	etc.	It	 is	also	optimised	for	the	implementation	on	low-cost,	battery-operated	devices	
with	limited	processing	and	storage	resources.	

WebSockets	

Link:	https://en.wikipedia.org/wiki/WebSocket	

WebSocket	 is	 a	 protocol	 providing	 full-duplex	 communication	 channels	 over	 a	 single	 TCP	
connection.	

WebSocket	is	designed	to	be	implemented	in	web	browsers	and	web	servers,	but	it	can	be	used	
by	 any	 client	 or	 server	 application.	 The	 WebSocket	 Protocol	 is	 an	 independent	 TCP-based	
protocol.	Its	only	relationship	to	HTTP	is	that	its	handshake	is	interpreted	by	HTTP	servers	as	an	
Upgrade	request.	The	WebSocket	protocol	makes	more	interaction	between	a	browser	and	a	
website	possible,	 facilitating	the	real-time	data	transfer	 from	and	to	the	server.	This	 is	made	
possible	by	providing	a	standardised	way	for	the	server	to	send	content	to	the	browser	without	
being	 solicited	 by	 the	 client,	 and	 allowing	 for	 messages	 to	 be	 passed	 back	 and	 forth	 while	
keeping	the	connection	open.	In	this	way	a	two-way	(bi-directional)	ongoing	conversation	can	
take	place	 between	 a	 browser	 and	 the	 server.	 The	 communications	 are	 done	over	 TCP	port	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	30	of	50	

number	 80,	 which	 is	 of	 benefit	 for	 those	 environments	 which	 block	 non-web	 Internet	
connections	 using	 a	 firewall.	 Similar	 two-way	 browser-server	 communications	 have	 been	
achieved	in	non-standardised	ways	using	stopgap	technologies	such	as	Comet.	

The	 WebSocket	 protocol	 is	 currently	 supported	 in	 most	 major	 browsers	 including	 Google	
Chrome,	Internet	Explorer,	Firefox,	Safari	and	Opera.	WebSocket	also	requires	web	applications	
on	the	server	to	support	it.	

	

2.3 Data Encoding Protocols

	

If	we	put	aside	“full-stack”	standards	like	OIC/OPC	or	AllJoyn	which	come	with	their	own	way	of	
encoding	messages,	it’s	desirable	that	AGILE	has	“raw”	support	for	data	encoding	protocols	that	
developers	may	use	to	transport	data/control	information	using	the	messaging	protocols	listed	
in	the	previous	section.	There	are	several	encoding	protocols	specifically	targeting	IoT	that	are	
meant	to	be	particularly	efficient	at	saving	bandwidth	and/or	processing	power	(and	therefore	
energy)	required.	

	

2.3.1 Evaluation Criteria

The	following	criteria	have	been	adopted	for	the	selection	of	the	data	encoding	protocols:	

● Optimised	for	bandwidth	
● Optimised	for	processing	power	
● Self-described	

	

2.3.2 Protocol Selection

Driven	by	the	previous	criteria,	the	selection	process	allowed	the	identification	of	the	following	
data	encoding	protocols.	

CBOR	

Link:	http://tools.ietf.org/html/rfc7049	

The	Concise	Binary	Object	Representation	(CBOR)	is	a	data	format	whose	design	goals	include	
the	possibility	of	extremely	small	code	size,	fairly	small	message	size,	and	extensibility	without	
the	 need	 for	 version	 negotiation.	 	 These	 design	 goals	 make	 it	 different	 from	 earlier	 binary	
serialisations	such	as	ASN.1	and	MessagePack.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	31	of	50	

XML	

Link:	https://en.wikipedia.org/wiki/XML		

Extensible	Markup	Language	(XML)	is	a	markup	language	that	defines	a	set	of	rules	for	encoding	
documents	 in	a	format	which	is	both	human-readable	and	machine-readable.	 It	 is	defined	by	
the	W3C's	XML	1.0	Specification	and	by	several	other	related	specifications,	all	of	which	are	free	
open	standards.	

The	design	goals	of	XML	emphasise	simplicity,	generality	and	usability	across	the	Internet.	It	is	a	
textual	data	format	with	strong	support	via	Unicode	for	different	human	languages.	Although	
the	design	of	XML	focuses	on	documents,	it	is	widely	used	for	the	representation	of	arbitrary	
data	structures	such	as	those	used	in	web	services.	

JSON	

Link:	https://en.wikipedia.org/wiki/JSON	

JSON	(JavaScript	Object	Notation)	is	an	open-standard	format	that	uses	human-readable	text	to	
transmit	data	objects	consisting	of	attribute–value	pairs.	 It	 is	 the	most	common	data	 format	
used	 for	asynchronous	browser/server	 communication	 (AJAJ),	 largely	 replacing	XML	which	 is	
used	by	AJAX.	

JSON	is	a	language-independent	data	format.	It	derives	from	JavaScript,	but	as	of	2016	code	to	
generate	and	parse	JSON-format	data	is	available	in	many	programming	languages.	The	official	
Internet	media	type	for	JSON	is	application/json.	The	JSON	filename	extension	is	.json.	

A	typical	mashup	fetches	JSON-format	data	from	several	different	web	servers	using	an	Open	
API.	

JSON's	basic	data	types	are:	

● Number:	 a	 signed	 decimal	 number	 that	 may	 contain	 a	 fractional	 part	 and	may	 use	
exponential	E	notation,	but	cannot	include	non-numbers	like	NaN.	The	format	makes	no	
distinction	 between	 integer	 and	 floating-point.	 JavaScript	 uses	 a	 double-precision	
floating-point	format	for	all	its	numeric	values,	but	other	languages	implementing	JSON	
may	encode	numbers	differently.	

● String:	 a	 sequence	 of	 zero	 or	 more	 Unicode	 characters.	 Strings	 are	 delimited	 with	
double-quotation	marks	and	support	a	backslash	escaping	syntax.	

● Boolean:	either	of	the	values	true	or	false	
● Array:	an	ordered	list	of	zero	or	more	values,	each	of	which	may	be	of	any	type.	Arrays	

use	square	bracket	notation	with	elements	being	comma-separated.	
● Object:	an	unordered	collection	of	name/value	pairs	where	the	names	(also	called	keys)	

are	 strings.	 Since	 objects	 are	 intended	 to	 represent	 associative	 arrays,[11]	 it	 is	
recommended,	 though	 not	 required,[12]	 that	 each	 key	 is	 unique	 within	 an	 object.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	32	of	50	

Objects	are	delimited	with	curly	brackets	and	use	commas	to	separate	each	pair,	while	
within	each	pair	the	colon	':'	character	separates	the	key	or	name	from	its	value.	

● null:	An	empty	value,	using	the	word	null	
Whitespace	 is	 allowed	 and	 ignored	 around	 or	 between	 syntactic	 elements	 (values	 and	
punctuation,	but	not	within	a	string	value).	Four	specific	characters	are	considered	whitespace	
for	this	purpose:	space,	horizontal	tab,	line	feed,	and	carriage	return.	JSON	does	not	provide	any	
syntax	for	comments.	

OGC	SensorML	

Link:	https://en.wikipedia.org/wiki/SensorML	

SensorML	is	an	approved	Open	Geospatial	Consortium	standard.	SensorML	provides	standard	
models	and	an	XML	encoding	for	describing	sensors	and	measurement	processes.	SensorML	can	
be	used	to	describe	a	wide	range	of	sensors,	including	both	dynamic	and	stationary	platforms	
and	both	in-situ	and	remote	sensors.	

Functions	supported	include	

● sensor	discovery	
● sensor	geolocation	
● processing	of	sensor	observations	
● a	sensor	programming	mechanism	
● subscription	to	sensor	alerts	

Examples	of	supported	sensors	are	

● stationary,	in-situ	–	chemical	“sniffer”,	thermometer,	gravity	meter	
● stationary,	remote	–	stream	velocity	profiler,	atmospheric	profiler,	Doppler	radar	
● dynamic,	in-situ	–	aircraft	mounted	ozone	“sniffer”,	GPS	unit,	dropsonde	

dynamic,	remote	–	satellite	radiometer,	airborne	camera,	soldier-mounted	video	

	

Protocol	Buffers	

Link:	https://en.wikipedia.org/wiki/Protocol_Buffers	

Protocol	Buffers	is	a	method	of	serialising	structured	data.	It	is	useful	in	developing	programs	to	
communicate	with	each	other	over	a	wire	or	for	storing	data.	The	method	involves	an	interface	
description	language	that	describes	the	structure	of	some	data	and	a	program	that	generates	
source	code	from	that	description	for	generating	or	parsing	a	stream	of	bytes	that	represents	
the	structured	data.	

Google	developed	Protocol	Buffers	for	use	internally	and	has	made	protocol	compilers	for	C++,	
Java	and	Python	available	to	the	public	under	a	free	software,	open	source	license.	Various	other	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	33	of	50	

language	implementations	are	also	available,	including	C#,	JavaScript,	Go,	Perl,	PHP,	Ruby,	Scala	
and	Julia.	

The	design	goals	for	Protocol	Buffers	emphasised	simplicity	and	performance.	In	particular,	 it	
was	designed	to	be	smaller	and	faster	than	XML.	

Protocol	Buffers	is	widely	used	at	Google	for	storing	and	interchanging	all	kinds	of	structured	
information.	The	method	serves	as	a	basis	for	a	custom	remote	procedure	call	(RPC)	system	that	
is	used	for	nearly	all	inter-machine	communication	at	Google.	

Protocol	Buffers	are	very	similar	to	the	Apache	Thrift	protocol	(used	by	Facebook	for	example),	
except	 that	 the	 public	 Protocol	 Buffers	 implementation	 does	 not	 include	 a	 concrete	 RPC	
protocol	stack	to	use	for	defined	services.	

Though	 the	 primary	 purpose	 of	 Protocol	 Buffers	 is	 to	 facilitate	 network	 communication,	 its	
simplicity	and	speed	make	Protocol	Buffers	an	alternative	to	data-centric	C++	classes	and	structs,	
especially	where	interoperability	with	other	languages	or	systems	might	be	needed	in	the	future.	

2.4 Remote Management Protocols

	

In	this	section	we	evaluate	the	protocols	that	enable	remote	management	of	a	communicating	
device,	in	our	case	an	AGILE	gateway,	or	the	assets	it	is	in	control	of.	The	main	evaluation	criteria	
are	 around	 “standardness”	 and	 “openness”,	 as	 we	 want	 AGILE	 to	 support	 management	
protocols	ensuring	seamless	management	of	a	gateway	over	its	lifespan.	

	

2.4.1 Evaluation Criteria

Same	as	per	messaging	protocols.	

	

2.4.2 Protocol Selection

LWM2M	

Link:	https://en.wikipedia.org/wiki/OMA_LWM2M	

OMA	 Lightweight	M2M	 is	 a	 protocol	 from	 the	Open	Mobile	Alliance	 for	M2M	or	 IoT	 device	
management.	Lightweight	M2M	enabler	defines	the	application	layer	communication	protocol	
between	a	LWM2M	Server	and	a	LWM2M	Client,	which	is	located	in	a	LWM2M	Device.	The	OMA	
Lightweight	M2M	enabler	 includes	device	management	and	service	enablement	 for	LWM2M	
Devices.	The	target	LWM2M	Devices	for	this	enabler	are	mainly	resource	constrained	devices.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	34	of	50	

Therefore,	this	enabler	makes	use	of	a	light	and	compact	protocol	as	well	as	an	efficient	resource	
data	model.	 It	 provides	 a	 choice	 for	 the	M2M	Service	 Provider	 to	 deploy	 a	M2M	 system	 to	
provide	service	to	the	M2M	User.	It	is	frequently	used	with	CoAP.	

OMA	Lightweight	M2M	is	designed	to:	

● Provide	Device	Management	functionality	over	sensor	or	cellular	networks	
● Transfer	service	data	from	the	network	to	devices	
● Extend	to	meet	the	requirements	of	most	any	application	

Lightweight	M2M	1.0	enabler	introduces	the	following	features	below	for	the	initial	release.	

● Simple	Object	based	resource	model	
● Resource	operations	of	creation/retrieval/update/deletion/configuration	of	attribute	
● Resource	observation/notification	
● TLV/JSON/Plain	Text/Opaque	data	format	support	
● UDP	and	SMS	transport	layer	support	
● DTLS	based	security	
● Queue	mode	for	NAT/Firewall	environment	
● Multiple	LWM2M	Server	support	

Basic	 M2M	 functionalities:	 LWM2M	 Server,	 Access	 Control,	 Device,	 Connectivity,	 Firmware	
Update,	Location,	Connectivity	Statistics	

OMA-DM	

Link:	https://en.wikipedia.org/wiki/OMA_Device_Management	

OMA	DM	specification	is	designed	for	management	of	mobile	devices	such	as	mobile	phones,	
PDAs,	and	tablet	computers.	Device	management	is	intended	to	support	the	following	uses:	

● Provisioning	 –	 Configuration	 of	 the	 device	 (including	 first	 time	 use),	 enabling	 and	
disabling	features	

● Device	Configuration	–	Allow	changes	to	settings	and	parameters	of	the	device	
● Software	Upgrades	–	Provide	 for	new	software	and/or	bug	 fixes	 to	be	 loaded	on	the	

device,	including	applications	and	system	software	
● Fault	Management	–	Report	errors	from	the	device,	query	about	status	of	device	

All	 of	 the	 above	 functions	 are	 supported	 by	 the	 OMA	 DM	 specification,	 and	 a	 device	 may	
optionally	implement	all	or	a	subset	of	these	features.	Since	OMA	DM	specification	is	aimed	at	
mobile	devices,	it	is	designed	with	sensitivity	to	the	following:	

● small	foot-print	devices,	where	memory	and	storage	space	may	be	limited	
● constraint	on	bandwidth	of	communication,	such	as	in	wireless	connectivity	
● tight	 security,	 as	 the	 devices	 are	 vulnerable	 to	 software	 attacks;	 authentication	 and	

challenges	are	made	part	of	the	specifications	

OneM2M	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	35	of	50	

Link:	http://www.onem2m.org/	

The	purpose	and	goal	of	oneM2M	is	to	develop	technical	specifications	which	address	the	need	
for	a	common	M2M	Service	Layer	that	can	be	readily	embedded	within	various	hardware	and	
software,	and	relied	upon	to	connect	the	myriad	of	devices	in	the	field	with	M2M	application	
servers	worldwide.	A	critical	objective	of	oneM2M	is	to	attract	and	actively	involve	organisations	
from	 M2M-related	 business	 domains	 such	 as:	 telematics	 and	 intelligent	 transportation,	
healthcare,	utilities,	industrial	automation,	smart	homes,	etc.	Initially,	oneM2M	shall	prepare,	
approve	and	maintain	the	necessary	set	of	Technical	Specifications	and	Technical	Reports	for:	

● Use	cases	and	requirements	for	a	common	set	of	Service	Layer	capabilities;	
● Service	 Layer	 aspects	with	high	 level	 and	detailed	 service	 architecture,	 in	 light	 of	 an	

access	independent	view	of	end-to-end	services;	
● Protocols/APIs/standard	 objects	 based	 on	 this	 architecture	 (open	 interfaces	 &	

protocols);	
● Security	and	privacy	aspects	(authentication,	encryption,	integrity	verification);	
● Reachability	and	discovery	of	applications;	
● Interoperability,	including	test	and	conformance	specifications;	
● Collection	of	data	for	charging	records	(to	be	used	for	billing	and	statistical	purposes);	
● Identification	and	naming	of	devices	and	applications;	
● Information	 models	 and	 data	 management	 (including	 store	 and	 subscribe/notify	

functionality);	
● Management	aspects	(including	remote	management	of	entities);	and	
● Common	use	cases,	 terminal/module	aspects,	 including	Service	 Layer	 interfaces/APIs	

between:	
○ Application	and	Service	Layers;	
○ Service	Layer	and	communication	functions	

OpenFlow	

Link:	https://en.wikipedia.org/wiki/OpenFlow	

OpenFlow	is	a	communications	protocol	that	gives	access	to	the	forwarding	plane	of	a	network	
switch	or	router	over	the	network.	

OpenFlow	 enables	 network	 controllers	 to	 determine	 the	 path	 of	 network	 packets	 across	 a	
network	 of	 switches.	 The	 controllers	 are	 distinct	 from	 the	 switches.	 This	 separation	 of	 the	
control	from	the	forwarding	allows	for	more	sophisticated	traffic	management	than	is	feasible	
using	 access	 control	 lists	 (ACLs)	 and	 routing	protocols.	Also,	OpenFlow	allows	 switches	 from	
different	vendors	—	often	each	with	their	own	proprietary	interfaces	and	scripting	languages	—	
to	 be	 managed	 remotely	 using	 a	 single,	 open	 protocol.	 The	 protocol's	 inventors	 consider	
OpenFlow	an	enabler	of	software	defined	networking	(SDN).	

OpenFlow	 allows	 remote	 administration	 of	 a	 layer	 3	 switch's	 packet	 forwarding	 tables,	 by	
adding,	modifying	and	removing	packet	matching	rules	and	actions.	This	way,	routing	decisions	
can	be	made	periodically	or	ad	hoc	by	the	controller	and	translated	into	rules	and	actions	with	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	36	of	50	

a	 configurable	 lifespan,	which	 are	 then	deployed	 to	 a	 switch's	 flow	 table,	 leaving	 the	 actual	
forwarding	 of	matched	 packets	 to	 the	 switch	 at	wire	 speed	 for	 the	 duration	 of	 those	 rules.	
Packets	which	are	unmatched	by	the	switch	can	be	forwarded	to	the	controller.	The	controller	
can	then	decide	to	modify	existing	flow	table	rules	on	one	or	more	switches	or	to	deploy	new	
rules,	to	prevent	a	structural	flow	of	traffic	between	switch	and	controller.	It	could	even	decide	
to	forward	the	traffic	itself,	provided	that	it	has	told	the	switch	to	forward	entire	packets	instead	
of	just	their	header.	

The	 OpenFlow	 protocol	 is	 layered	 on	 top	 of	 the	 Transmission	 Control	 Protocol	 (TCP),	 and	
prescribes	the	use	of	Transport	Layer	Security	(TLS).	Controllers	should	listen	on	TCP	port	6653	
for	 switches	 that	 want	 to	 set	 up	 a	 connection.	 Earlier	 versions	 of	 the	 OpenFlow	 protocol	
unofficially	used	port	6633.	

SNMP	

Link:	https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol	

Simple	Network	Management	Protocol	(SNMP)	is	an	Internet-standard	protocol	for	collecting	
and	 organising	 information	 about	 managed	 devices	 on	 IP	 networks	 and	 for	 modifying	 that	
information	to	change	device	behaviour.	Devices	that	typically	support	SNMP	include	routers,	
switches,	servers,	workstations,	printers,	modem	racks	and	more.	

SNMP	is	widely	used	in	network	management	systems	to	monitor	network-attached	devices	for	
conditions	that	warrant	administrative	attention.	SNMP	exposes	management	data	in	the	form	
of	variables	on	the	managed	systems,	which	describe	the	system	configuration.	These	variables	
can	then	be	queried	(and	sometimes	set)	by	managing	applications.	

SNMP	is	a	component	of	the	Internet	Protocol	Suite	as	defined	by	the	Internet	Engineering	Task	
Force	(IETF).	It	consists	of	a	set	of	standards	for	network	management,	including	an	application	
layer	protocol,	a	database	schema,	and	a	set	of	data	objects.	

In	typical	uses	of	SNMP	one	or	more	administrative	computers,	called	managers,	have	the	task	
of	monitoring	or	managing	a	group	of	hosts	or	devices	on	a	computer	network.	Each	managed	
system	executes,	at	all	times,	a	software	component	called	an	agent	which	reports	information	
via	SNMP	to	the	manager.	

An	SNMP-managed	network	consists	of	three	key	components:	

● Managed	device	
● Agent	—	software	which	runs	on	managed	devices	
● Network	management	station	(NMS)	—	software	which	runs	on	the	manager	

A	 managed	 device	 is	 a	 network	 node	 that	 implements	 an	 SNMP	 interface	 that	 allows	
unidirectional	(read-only)	or	bidirectional	(read	and	write)	access	to	node-specific	information.	
Managed	 devices	 exchange	 node-specific	 information	 with	 the	 NMSs.	 Sometimes	 called	
network	elements,	the	managed	devices	can	be	any	type	of	device,	including,	but	not	limited	to,	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	37	of	50	

routers,	access	servers,	switches,	cable	modems,	bridges,	hubs,	IP	telephones,	IP	video	cameras,	
computer	hosts,	and	printers.	

An	 agent	 is	 a	 network-management	 software	module	 that	 resides	on	 a	managed	device.	An	
agent	has	 local	knowledge	of	management	 information	and	translates	that	 information	to	or	
from	an	SNMP-specific	form.	

A	network	management	station	(NMS)	executes	applications	that	monitor	and	control	managed	
devices.	NMSes	provide	the	bulk	of	the	processing	and	memory	resources	required	for	network	
management.	One	or	more	NMSes	may	exist	on	any	managed	network.	

	

2.5 Security Protocols and Standards

	

In	this	section,	we	list	the	security	protocols	that	need	to	be	supported	in	AGILE.	Security	is	an	
important	aspect	of	an	IoT	solution,	and	we	will	favour	security	mechanisms	based	state-of-the-
art	 cryptography	 techniques,	 and	 that	 ease	 the	 integration	with	 existing	 systems	 (e.g.	Web-
based	solutions).	

	

2.5.1 Evaluation Criteria

Driven	by	previous	criteria	set,	as	well	as	per	the	Confidentiality,	Integrity	and	Availability	triad.	
This	component	is	further	analysed	as	part	of	WP5	(Gateway	Security,	Data	Provenance	&	Access	
Control).	

2.5.2 Protocol and Standard Selection

DNS-SEC	

Link:	https://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions	

The	Domain	Name	System	Security	Extensions	(DNSSEC)	is	a	suite	of	Internet	Engineering	Task	
Force	 (IETF)	 specifications	 for	 securing	 certain	 kinds	 of	 information	 provided	 by	 the	Domain	
Name	System	(DNS)	as	used	on	Internet	Protocol	(IP)	networks.	It	is	a	set	of	extensions	to	DNS	
which	provide	to	DNS	clients	(resolvers)	origin	authentication	of	DNS	data,	authenticated	denial	
of	existence,	and	data	integrity,	but	not	availability	or	confidentiality.	

The	original	design	of	the	Domain	Name	System	(DNS)	did	not	include	security;	instead,	it	was	
designed	 to	be	 a	 scalable	distributed	 system.	 The	Domain	Name	System	Security	 Extensions	
(DNSSEC)	 attempts	 to	 add	 security,	 while	 maintaining	 backward	 compatibility.	 RFC	 3833	
documents	some	of	the	known	threats	to	the	DNS	and	how	DNSSEC	responds	to	those	threats.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	38	of	50	

DNSSEC	was	designed	to	protect	applications	(and	caching	resolvers	serving	those	applications)	
from	using	forged	or	manipulated	DNS	data,	such	as	that	created	by	DNS	cache	poisoning.	All	
answers	from	DNSSEC	protected	zones	are	digitally	signed.	By	checking	the	digital	signature,	a	
DNS	resolver	is	able	to	check	if	the	information	is	identical	(i.e.	unmodified	and	complete)	to	the	
information	published	by	 the	 zone	owner	 and	 served	on	 an	 authoritative	DNS	 server.	While	
protecting	IP	addresses	is	the	immediate	concern	for	many	users,	DNSSEC	can	protect	any	data	
published	in	the	DNS,	including	text	records	(TXT),	mail	exchange	records	(MX),	and	can	be	used	
to	bootstrap	other	security	systems	that	publish	references	to	cryptographic	certificates	stored	
in	the	DNS	such	as	Certificate	Records	(CERT	records,	RFC	4398),	SSH	fingerprints	(SSHFP,	RFC	
4255),	IPSec	public	keys	(IPSECKEY,	RFC	4025),	and	TLS	Trust	Anchors	(TLSA,	RFC	6698).	

DNSSEC	 does	 not	 provide	 confidentiality	 of	 data;	 in	 particular,	 all	 DNSSEC	 responses	 are	
authenticated	but	not	encrypted.	DNSSEC	does	not	protect	against	DoS	attacks	directly,	though	
it	 indirectly	 provides	 some	benefit	 (because	 signature	 checking	 allows	 the	use	of	 potentially	
untrustworthy	parties;	this	 is	true	only	 if	 the	DNS	server	 is	using	a	self-signed	certificate,	not	
recommended	for	Internet-facing	DNS	servers).	

DTLS	

Link:	https://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security	

In	 information	 technology,	 the	 Datagram	 Transport	 Layer	 Security	 (DTLS)	 communications	
protocol	 provides	 communications	 security	 for	 datagram	 protocols.	 DTLS	 allows	 datagram-
based	 applications	 to	 communicate	 in	 a	 way	 that	 is	 designed	 to	 prevent	 eavesdropping,	
tampering,	or	message	forgery.	The	DTLS	protocol	 is	based	on	the	stream-oriented	Transport	
Layer	Security	(TLS)	protocol	and	is	intended	to	provide	similar	security	guarantees.	The	DTLS	
protocol	datagram	preserves	the	semantics	of	the	underlying	transport	—	the	application	does	
not	 suffer	 from	 the	 delays	 associated	 with	 stream	 protocols,	 but	 has	 to	 deal	 with	 packet	
reordering,	loss	of	datagram	and	data	larger	than	the	size	of	a	datagram	network	packet.	

oAuth	

Link:	https://en.wikipedia.org/wiki/OAuth	

OAuth	is	an	open	standard	for	authorisation,	commonly	used	as	a	way	for	Internet	users	to	log	
into	 third	party	websites	using	 their	Microsoft,	Google,	Facebook,	Twitter,	One	Network	etc.	
accounts	 without	 exposing	 their	 password.	 Generally,	 OAuth	 provides	 to	 clients	 a	 "secure	
delegated	access"	to	server	resources	on	behalf	of	a	resource	owner.	It	specifies	a	process	for	
resource	owners	to	authorise	third-party	access	to	their	server	resources	without	sharing	their	
credentials.	 Designed	 specifically	 to	 work	 with	 Hypertext	 Transfer	 Protocol	 (HTTP),	 OAuth	
essentially	allows	access	tokens	to	be	issued	to	third-party	clients	by	an	authorisation	server,	
with	the	approval	of	the	resource	owner.	The	third	party	then	uses	the	access	token	to	access	
the	protected	resources	hosted	by	the	resource	server.	

TLS	

Link:	https://en.wikipedia.org/wiki/Transport_Layer_Security	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	39	of	50	

Transport	Layer	Security	(TLS)	and	its	predecessor,	Secure	Sockets	Layer	(SSL),	both	of	which	are	
frequently	referred	to	as	'SSL',	are	cryptographic	protocols	designed	to	provide	communications	
security	over	a	computer	network.	Several	versions	of	the	protocols	are	in	widespread	use	in	
applications	such	as	web	browsing,	email,	Internet	faxing,	instant	messaging,	and	voice-over-IP	
(VoIP).	Major	web	sites	use	TLS	to	secure	all	communications	between	their	servers	and	web	
browsers.	

The	 primary	 goal	 of	 the	 TLS	 protocol	 is	 to	 provide	 privacy	 and	 data	 integrity	 between	 two	
communicating	computer	applications.	When	secured	by	TLS,	connections	between	a	client	(e.g.	
a	 web	 browser)	 and	 a	 server	 (e.g.	 wikipedia.org)	 will	 have	 one	 or	 more	 of	 the	 following	
properties:	

The	 connection	 is	 private	 because	 symmetric	 cryptography	 is	 used	 to	 encrypt	 the	 data	
transmitted.	The	keys	for	this	symmetric	encryption	are	generated	uniquely	for	each	connection	
and	are	based	on	a	secret	negotiated	at	the	start	of	the	session	(see	TLS	handshake	protocol).	
The	server	and	client	negotiate	the	details	of	which	encryption	algorithm	and	cryptographic	keys	
to	use	before	the	first	byte	of	data	is	transmitted	(see	Algorithm).	The	negotiation	of	a	shared	
secret	 is	 both	 secure	 (the	 negotiated	 secret	 is	 unavailable	 to	 eavesdroppers	 and	 cannot	 be	
obtained,	even	by	an	attacker	who	places	himself	in	the	middle	of	the	connection)	and	reliable	
(no	attacker	can	modify	the	communications	during	the	negotiation	without	being	detected).	

The	identity	of	the	communicating	parties	can	be	authenticated	using	public-key	cryptography.	
This	authentication	can	be	made	optional,	but	is	generally	required	for	at	least	one	of	the	parties	
(typically	the	server).	

The	connection	is	reliable	because	each	message	transmitted	includes	a	message	integrity	check	
using	a	message	authentication	code	to	prevent	undetected	loss	or	alteration	of	the	data	during	
transmission.	

In	addition	to	the	properties	above,	careful	configuration	of	TLS	can	provide	additional	privacy-
related	properties	such	as	 forward	secrecy,	ensuring	that	any	future	disclosure	of	encryption	
keys	cannot	be	used	to	decrypt	any	TLS	communications	recorded	in	the	past.[2]	

TLS	supports	many	different	methods	for	exchanging	keys,	encrypting	data,	and	authenticating	
message	 integrity	 (see	 Algorithm).	 As	 a	 result,	 secure	 configuration	 of	 TLS	 involves	 many	
configurable	 parameters,	 and	 not	 all	 choices	 provide	 all	 of	 the	 privacy-related	 properties	
described	in	the	list	above	(see	authentication	and	key	exchange	table,	cipher	security	table,	and	
data	integrity	table).	

Attempts	have	been	made	to	subvert	aspects	of	the	communications	security	that	TLS	seeks	to	
provide	and	the	protocol	has	been	revised	several	times	to	address	these	security	threats	(see	
Security).	Web	browsers	have	also	been	revised	by	their	developers	to	defend	against	potential	
security	weaknesses	after	these	were	discovered	(see	TLS/SSL	support	history	of	web	browsers).	

	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	40	of	50	

2.6 Full-Stack Standards

	

Over	 the	 last	 few	 years,	 several	 SDOs	 have	 worked	 on	 providing	 integrated	 solutions	 that	
simplify	end-to-end	integration	of	IoT	solutions,	all	the	way	from	the	low-level	transport	layers,	
to	networking	functions,	to	defining	the	semantics	of	the	IoT	data	streams.		

	

2.6.1 Evaluation Criteria

Driven	by	all	criteria	defined	for	protocols	as	well	as	security,	in	the	respective	sections.	

2.6.2 Standard Selection

OIC/OCF	

Link:	http://openconnectivity.org	

Billions	 of	 connected	 devices	 (devices,	 phones,	 computers	 and	 sensors)	 should	 be	 able	 to	
communicate	 with	 one	 another	 regardless	 of	 manufacturer,	 operating	 system,	 chipset	 or	
physical	 transport.	 The	 Open	 Connectivity	 Foundation	 (OCF)	 is	 creating	 a	 specification	 and	
sponsoring	 an	 open	 source	 project	 to	 make	 this	 possible.	 OCF	 will	 unlock	 the	 massive	
opportunity	 in	 the	 IoT	 market,	 accelerate	 industry	 innovation	 and	 help	 developers	 and	
companies	create	solutions	that	map	to	a	single	open	specification.	OCF	will	help	ensure	secure	
interoperability	for	consumers,	business,	and	industry.	

Alljoyn	

Link:	https://en.wikipedia.org/wiki/AllJoyn	

AllJoyn	 is	 a	 system	 that	 allows	 devices	 to	 communicate	with	 other	 devices	 around	 them.	 A	
simple	example	would	be	a	motion	sensor	letting	a	light	bulb	know	no	one	is	in	the	room	it	is	
lighting,	so	it	can	shut	itself	off.	

The	system	itself	is	an	open	source	project	which	provides	a	universal	software	framework	and	
core	set	of	system	services	that	enable	interoperability	among	connected	products	and	software	
applications	across	manufacturers	to	create	dynamic	proximal	networks	using	a	D-Bus	message	
bus.	Qualcomm	has	led	development	of	this	open	source	project,	and	first	presented	it	at	the	
Mobile	World	 Congress	 2011.	 Unity	 Technologies	 has	 provided	 the	 'AllJoyn	Unity	 Extension'	
packaged	with	the	AllJoyn	SDK	release	2.3.6	and	above.	Major	OEM	and	ODM	partners	includes	
Foxconn,	Technicolor,	LG-Innotek,	LeTV	and	Xiaomi.	

The	 AllJoyn	 software	 framework	 and	 core	 system	 services	 let	 compatible	 devices	 and	
applications	 find	each	other,	communicate	and	collaborate	across	 the	boundaries	of	product	
category,	platform,	brand,	and	connection	 type.	Target	devices	 include	 those	 in	 the	 fields	of	
Connected	Home,	Smart	TV,	Smart	Audio,	Broadband	Gateways,	and	Automotive.	Qualcomm	is	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	41	of	50	

working	on	providing	OEM	solutions.	Currently,	the	communication	layer	(and	thus	hardware	
requirements)	is	limited	to	wi-fi.	

Though	the	protocol	started	at	Qualcomm,	they	have	signed	over	the	source	code	to	the	Linux	
Foundation.	The	AllSeen	Alliance	has	been	created	to	promote	some	type	of	interoperability	for	
the	internet	of	things,	and	a	number	of	consumer	brands	have	signed	on	including	LG,	Sharp,	
Haier,	 Panasonic,	 Sony,	 Electrolux,	 Sears	 and	 Arçelik.	 Other	members	 include	 Silicon	 Image,	
Cisco,	 TP-Link,	 Canary,	 Two	 Bulls,	 doubleTwist,	 FON,	 Harman,	 HTC,	 LIFX,	 Liteon,	 Muzzley,	
Sproutling,	Microsoft	and	Wilocity.	

Zigbee	

Link:	https://en.wikipedia.org/wiki/ZigBee	

ZigBee	is	an	IEEE	802.15.4-based	specification	for	a	suite	of	high-level	communication	protocols	
used	to	create	personal	area	networks	with	small,	low-power	digital	radios.	

The	technology	defined	by	the	ZigBee	specification	is	intended	to	be	simpler	and	less	expensive	
than	other	wireless	personal	area	networks	(WPANs),	such	as	Bluetooth	or	Wi-Fi.	Applications	
include	 wireless	 light	 switches,	 electrical	 meters	 with	 in-home-displays,	 traffic	 management	
systems,	 and	 other	 consumer	 and	 industrial	 equipment	 that	 requires	 short-range	 low-rate	
wireless	data	transfer.	

Its	 low	 power	 consumption	 limits	 transmission	 distances	 to	 10–100	 metres	 line-of-sight,	
depending	on	power	output	and	environmental	characteristics.	ZigBee	devices	can	transmit	data	
over	long	distances	by	passing	data	through	a	mesh	network	of	intermediate	devices	to	reach	
more	distant	ones.	ZigBee	is	typically	used	in	low	data	rate	applications	that	require	long	battery	
life	and	secure	networking	(ZigBee	networks	are	secured	by	128-bit	symmetric	encryption	keys).	
ZigBee	has	a	defined	rate	of	250	kbit/s,	best	suited	for	intermittent	data	transmissions	from	a	
sensor	or	input	device.	

Z-Wave	

Link:	https://en.wikipedia.org/wiki/Z-Wave		

Z-Wave	 is	 a	 wireless	 communications	 protocol	 for	 home	 automation.	 It	 is	 oriented	 to	 the	
residential	 control	 and	 automation	market	 and	 is	 intended	 to	 provide	 a	 simple	 and	 reliable	
method	to	wirelessly	control	lighting,	HVAC,	security	systems,	home	cinema,	automated	window	
treatments,	swimming	pool	and	spa	controls,	and	garage	and	home	access	controls.	There	are	
hundreds	 of	 interoperable	 Z-Wave	 products	 marketed	 under	 different	 brands,	 and	 over	 35	
million	have	been	sold	since	2005.	Z-Wave	was	developed	by	a	Danish	start-up	called	Zen-Sys	
that	was	acquired	by	Sigma	Designs	in	2008.	

A	Z-Wave	automation	system	can	be	remote	controlled	via	the	Internet,	using	a	Z-Wave	gateway	
or	 central	 control	 device	which	 serves	 as	 both	 the	 Z-Wave	 hub	 controller	 and	 portal	 to	 the	
outside.	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	42	of	50	

With	 regards	 to	 security,	 Z-Wave	 is	 based	 on	 a	 proprietary	 design	 and	 a	 sole	 chip	 vendor.	
Although	 there	have	been	a	number	of	academic	and	practical	 security	 researches	on	home	
automation	systems	based	on	ZigBee	and	X10	protocols,	research	is	still	in	its	infancy	to	analyse	
the	 Z-Wave	protocol	 stack	 layers,	 requiring	 the	 design	 of	 a	 radio	 packet	 capture	 device	 and	
related	software	to	intercept	Z-Wave	communications.	An	early	vulnerability	was	uncovered	in	
AES-encrypted	Z-Wave	door	locks	that	could	be	remotely	exploited	to	unlock	doors	without	the	
knowledge	of	the	encryption	keys,	and	due	to	the	changed	keys,	subsequent	network	messages,	
as	in	"door	is	open",	would	be	ignored	by	the	network.	This	vulnerability	was	not	due	to	a	flaw	
in	the	Z-Wave	protocol	specification	but	instead	was	an	implementation	error.	

Finally,	on	the	hardware	side,	the	chip	for	Z-Wave	nodes	is	the	ZW0201,	built	around	an	Intel	
MCS-51	microcontroller	with	an	internal	system	clock	of	16	MHz.	The	RF	part	of	the	chip	contains	
an	GisFSK	transceiver	for	a	software	selectable	frequency.	With	a	power	supply	2.2-3.6	volts,	it	
consumes	23mA	in	transmit	mode.	

	

	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	43	of	50	

3 Report Conclusion

The	outcomes	of	this	report	feed	into	further	deliverables	incl.	D2.2	(Initial	version	of	Gateway	
Self-	configuration,	IoT	Device	discovery	&	Remote	gateway	management)	due	on	M9,	and	D2.3	
(Final	 version	 of	 Gateway	 Self-	 configuration,	 IoT	 Device	 discovery	 &	 Remote	 gateway	
management)	due	on	M18.	

An	extensive	review	of	the	protocols	and	standards	that	were	assessed	for	their	fitness	in	AGILE	
follows	in	the	Appendix.	

	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	44	of	50	

	

Appendix A – Protocols and Standards in IoT

Connectivity Protocols

 Communication Technology
Protocol/Standard Asset ⟷ GW GW ⟷ GW GW ⟷ Cloud Wired / wireless Range Max throughput Security

6LoWPAN � � � wireless

802.15.4 � wireless 10-20m indoors
300m "free-range" �

Bluetooth 4.0 � wireless ~10m up to 24 Mbps
Bluetooth Smart
(BLE) � � wireless >100m 1 Mbps �

enOcean � wireless 30m indoors
300m "free-range" 120 kbps

�
Ethernet � � � wired

KNX �
two-wire bus
PLC
RF 868 MHz

~1000m
-
-

9,600 bps
1,200 bps
16.4 kbps �

LoRA � wireless
2-5km urban
<15km suburban 0.3 to 38.4 kbps

�
NB-LTE � wireless <15km up to 150 kbps �
NFC � wireless <10cm ~2.5 kbps �
RF (433/833MHz) � � wireless

RS-232 � wired <300m 115,200 bps

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	45	of	50	

RS-485 � � wired 1,200m 35 Mbps up to 10 m
100 kbps at 1200 m

Sigfox � wireless
10km urban
50km rural 100bps

Wi-Fi � � � wireless 50m indoors
100m "free-range"

Zigbee wireless 10-100m "free-range" �
	

Messaging Protocols

 Communication Technology Open source aspects
Protocol/Standard Asset ⟷ GW GW ⟷ GW GW ⟷ Cloud Discovery Security Open standard? OSS implementations available?

CoAP � � � � � � +++

Modbus ?

MQTT � � � +++++

MQTT-SN � � � � ++

WebSockets � � � ++++
	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	46	of	50	

Remote Management Protocols

 Communication Open source aspects
Protocol/Standard Asset ⟷ GW GW ⟷ GW GW ⟷ Cloud Open standard? OSS implementations available?

LWM2M � � �

OMA-DM � � �

OneM2M � � � � �

OpenFlow � � � �

SNMP � � � �
	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	47	of	50	

Data Encoding Protocols

 Communication Technology Open source aspects
Protocol/Standard Asset ⟷ GW GW ⟷ GW GW ⟷ Cloud Bandwidth usage CPU/memory usage Open standard? OSS implementations?

CBOR � � � +++ +++ Y ++

XML � � --- - Y ++++

JSON � � � + Y ++++

OGC SensorML � � ? ? Y

Protocol Buffers � � � ++ ++ Y ++++
	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	48	of	50	

Security Protocols

 Communication Open source aspects
Protocol/Standard Asset ⟷ GW GW ⟷ GW GW ⟷ Cloud Open standard? OSS implementations available?

DNS-SEC � � �

DTLS � � � �

oAuth � � � �

TLS � � � �
	

	 	

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	49	of	50	

Full-Stack Protocols

 Communication Technology
Protocol/Standard Asset ⟷ GW GW ⟷ GW GW ⟷ Cloud Connectivity Messaging Encoding

OIC/OCF � � � CoAP CBOR, JSON

AllJoyn � � ?

Zigbee � � 802.15.4

Z-Wave � ? Proprietary Proprietary Manchester Code

	
	
H2020-688088—AGILE		 Adaptive	Gateways	for	dIverse	muLtiple	Environments	
	

©	D2.1	Core	requirements	specification	and	IoT	protocol	integration	 Page	50	of	50	

