

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 1 of 72

Adaptive Gateways for dIverse
muLtiple Environments

D3.3

Application Interfaces (Gateway, Data Management &

Developerôs Interface) ï final integration ï 3rd AGILE

Release ï Full Software Stack

Project Acronym AGILE

Project Title Adaptive Gateways for Diverse Multiple Environments

Project Number 688088

Work Package WP3 Device, Data Management & Developers

Environment Development

Lead Beneficiary CN

Editor Csaba Kiraly (CREATENET)

Reviewer Paolo Azzoni (EUROTECH)

Reviewer Andreas Menychtas (BioAssist)

Dissemination Level PU

Contractual Delivery Date

Actual Delivery Date 03/10/2018

Version V2.0.0

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 2 of 72

Abstract

This deliverable presents how the AGILE software stack integrates components

developed by the consortium and additional open source components into a modular

framework, and how this framework is exposed to the user through the AGILE Graphical

User Interface (GUI). In addition, it describes some non-GUI related elements that were

not documented in previous deliverables, namely: how Kura is integrated with the AGILE

framework; the local data storage API; and the JavaScript AGILE SDK. The document

has been further edited since version one, to address feedback from AGILE project

reviewers.

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 3 of 72

Document History

Version Date Comments

V0.1 15/12/2017 Initial version, definition of ToC

V0.2 13/02/2018 Added Entity/Attribute management;

Recommendation/Configuration services

V0.3 15/03/2018 Added architecture description; Developer UI; Kura

integration

V0.4 13/04/2018 Integrated remaining parts

V0.5 13/04/2018 Gateway management interfaces, SDK and Data

V0.5.1 13/04/2018 Proofreading. Reference to associated data packages

V0.5.2 13/04/2018 Abstract. Minor corrections.

V0.5.3 14/04/2018 Review comments and modifications.

V1.0.0 14/04/2018 Final version.

V1.0.1 28/08/2018 Re-opening for extension

V1.1.0 17/09/2018 Adding section on data management & visualisation

V1.1.1 17/09/2018 Recommender Services section is updated.

V1.1.2 24/09/2018 Cloud Recommender UI is added.

V1.1.3 25/09/2018 OS and lower stack component sections updated

V1.1.4 25/09/2018 Minor updates in the Recommender Services section

V1.1.5 26/09/2018 Adding section on deployment

V1.1.6 26/09/2018 Updates on Data Management

V1.1.7 26/09/2018 Online documentation references; deployment

amendments; further content review

V1.2.0 27/09/2018 Version for internal review

V2.0.0 02/10/2018 Final extended version.

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 4 of 72

Table of Contents

1 Introduction ... 8
1.1 Structure of this document .. 8

2 The AGILE Stack explained ... 9
3 Deploying an AGILE Gateway ... 14

3.1 Raspbian based standalone gateway ... 14
3.2 Docker and docker-compose based installation ... 15
3.3 ResinOS-based gateway with local management ... 15
3.4 resinOS-based remotely-managed installation ... 16
3.5 Building and installing from source ... 17

4 The AGILE Graphical User Interface ... 19
4.1 GUI Desktop Framework ... 19
4.2 Device Management ... 21
4.3 Data management and visualisation ... 28

4.3.1 Data visualisation ... 28
4.3.2 Local storage of data... 30
4.3.3 Cloud export of local data .. 33

4.4 Entities and Attribute Management in the UI ... 36
4.5 Embedded Development Environment ... 39

4.5.1 Integration with AGILE software stack.. 39
4.6 Recommendation Services ... 42

4.6.1 Recommendation Techniques... 43
4.6.2 Integration Points .. 45
4.6.3 Further Results .. 49
4.6.4 Ongoing Work .. 49

4.7 Configuration Services ... 49
4.7.1 Knowledge Base of the Configurator ... 49
4.7.2 User Interface ... 51
4.7.3 A priori Conflict Detection ... 54
4.7.4 TUGraz Publications (Recommendation and Configuration) 54

5 Kura integration... 56
5.1 Kura Services .. 56
5.2 Challenges and Principles of Integration .. 57

5.2.1 Kura AGILE Integration ... 58
5.2.2 Kura REST Publisher ... 58
5.2.3 Kura Industrial Protocols Interfacing REST APIs 60
5.2.4 Kura Automatic Configuration Page Generation for AGILE Components 60

5.3 Example Use Case .. 64
6 AGILE SDK, and Data service ... 67

6.1 Software Development Kit (SDK) ... 67
6.2 AGILE data API ... 69

7 Summary ... 72

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 5 of 72

List of Figures

Figure 1: AGILE Software Architecture .. 10
Figure 2: AGILE deployment process using resinOS .. 16
Figure 3: single sign-on mechanism supporting various authentication types 21
Figure 4: Screenshot of OS.js with the Data Visualisation UI and the Developer UI.... 21
Figure 5: Realtime status of microservices on single gateway device 22
Figure 6: Device provisioning based on existing configuration 24
Figure 7: Device statistics and health information ... 24
Figure 8: Device settings propagate across fleet .. 25
Figure 9: Deployments tracked through a CI (Continuous Integration) process 26
Figure 10: Remote device management incl. exposing AGILE UI link over HTTPS ... 26
Figure 11: "Control Centre" via Resin.io for tracking single-device service status 27
Figure 12: Monitoring and remove access (SSH) of individual AGILE containers 27
Figure 13: Data visualisation layout. .. 29
Figure 14: Data visualisation layout after resizing. .. 30
Figure 15: User interface for creating local storage policies. ... 31
Figure 16: User interface for managing local retention policies. 32
Figure 17: Confirmation dial warning about the presence of conflicting encryption

policies .. 33
Figure 18: Cloud export user interface. .. 34
Figure 19: Date Time Picker interface ... 35
Figure 20: User Profile ... 37
Figure 21: User Overview .. 38
Figure 22: Policy Management... 38
Figure 23: configuration of an AGILE read node. ... 41
Figure 24: example workflow executing various actions based on ambient temperature

measurements. .. 41
Figure 25 Recommendation and Configuration Services Overview. 42
Figure 26: Recommendation Technology Overview.. 44
Figure 27: Workflow/Node Recommendation on Node-Red ... 46
Figure 28: Cloud Service Provider Recommendation on Node-Red 46
Figure 29: A Cloud Service Providerôs Web Page ... 47
Figure 30: Device Management UI with the Device Recommender Tab 47
Figure 31: The Amazon page of the recommended device .. 48
Figure 32: A simplified version of the pollution monitoring domain of Pilot-C 50
Figure 33: the main form of the configurator's user interface .. 52
Figure 34: The configurator's loading screen ... 52
Figure 35: a form illustrating a possible configuration generated by the configurator .. 53
Figure 36: Information, that no consistent configuration could be found 53
Figure 37: A user requirement which is responsible for the conflict (highlighted) 54
Figure 38: AGILE Kura Architecture ... 58
Figure 39: local configuration UI architecture ... 61
Figure 40: Example of AGILE Component configuration form: the Recommender

configuration page .. 62
Figure 41: process for the automatic generation of configuration UI pages. 63

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 6 of 72

Figure 42: The Modbus application workflow ... 65
Figure 43: The workflow starts executing .. 65
Figure 44: Data from the Modbus slave are collected and stored in Kapua 66
Figure 45: Node-RED based approach to build AGILE application using Kura 66

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 7 of 72

Acronyms

Acronym Meaning

AGILE Adaptive Gateways for dIverse muLtiple Environments

API Application Programming Interface

DB Database

GPIO General-Purpose Input/Output

GPS Global Positioning System

GUI Graphical User Interface

HID Human Interface Device

HTTP Hypertext Transfer Protocol

I/O Input/Output

I2C Inter-integrated Circuit

IoT Internet of Things

IPC Inter-Process Communication

JNI Java Native Interface

JS JavaScript

JSON JavaScript Object Notation

M2M Machine to machine

MQTT MQ Telemetry Transport

NMEA National Marine Electronics Association

OS Operating System

OSGi Open Service Gateway Initiative

PWM Pulse-width Modulation

RPC Remote Procedure Call

SDK Software Development Kit

SPI Serial Peripheral Interface

UI User Interface

USB Universal Serial Bus

UX User Experience

WebDAV Web-distributed Authoring and Versioning

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 8 of 72

1 Introduction

AGILE implements a modular gateway framework for the management of IoT devices.

A great part of the design and development work of the project is dedicated to the software

modules that the user interacts with. This deliverable (D3.3) presents how the AGILE

software stack integrates components developed by the consortium and additional open

source components into a modular framework, and how this framework is exposed to the

user through the AGILE Graphical User Interface.

D3.3 extends on D3.1 (Requirements Specification & SW Architecture) and D3.2

(Application Interfaces ï Gateway, Data Management & Developerôs Interface ï initial

implementation) by updating information and detailing aspects emerged during the

development process. It accompanies the software released contemporarily to this

deliverable (AGILE stack v0.4.0) which integrates the full AGILE software stack as

foreseen in the proposal. However, it is important to note that further software work, as

part of Task 3.5 ñAGILE SW Maintenanceò is still on-going and will serve to expand the

capabilities of the stack in directions emerged during the open call process.

1.1 Structure of this document

Section 2 introduces the AGILE software stack, revisiting and updating the software

architecture specified in D3.1 to reflect the changes introduced during the course of

development thanks to developer discussions as well as based on feedback received from

pilot and open call project participants.

Section 3 describes various AGILE deployment methods, and Section 4 goes on by

detailing the AGILE Graphical User Interface, presenting its design principles and

individual components including various features of the management UI, remote

management possibilities, and the rapid development environment embedded in the

AGILE framework. It also introduces UI elements through which users can benefit from

AGILEôs underlying recommendation and configuration services.

In Section 5 we discuss the integration of Kura in AGILE, which is particularly

challenging since both AGILE and Kura are complex frameworks with partially

overlapping functionalities.

Finally, Section 6 presents two elements of the stack that were not discussed in previous

deliverables: the agile data API and its implementation providing on-gateway storage

functionalities, and the agile SDK, which is not part of the stack but rather an important

library helping developers (both internal to the project and external app developers) with

AGILE Framework integration.

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 9 of 72

2 The AGILE Stack explained

In this section we describe the software architecture of the AGILE IoT Gateway software

stack, providing an update of the reference development view presented first in D3.1. As

a recap, we have identified the following principles to guide the architecture design of

AGILE:

¶ Need for strong modularity : we want that AGILE supports the most common

IoT/M2M protocols, but itôs impossible to include them all. Thus, we want that

developers are able to easily plug in the modules that implement even proprietary

protocols for device/cloud communication and other features.

¶ Support for user interfaces that interact with the core AGILE modules (device

management, data management, protocol support, application design and

execution, etc.).

¶ Language-agnostic design, i.e. support for more than one runtimes and

programming environments: the AGILE components that we have identified for

use (protocol libraries, user interfaces, etc.) adopt different runtimes (Java,

Python, Node.JS). In addition, we donôt want to force external developers to use

a specific runtime environment or programming language for developing their

application on top of the AGILE software components.

¶ Support for a wide range of hardware IoT gateway platforms: similarly to the

previous point, we donôt want to lock developers and companies into using 1-2

selected hardware platforms. AGILE should support as many of the gateway class

platforms as possible with different CPU architectures, also allowing companies

to scale their AGILE based products, following the changing requirements from

prototyping to production.

¶ Configurability : the possibility to allow developers to cherry-pick the specific

software components from the AGILE framework based on their needs and

compose a working stack with relative ease.

¶ Extensibility : the possibility to benefit from a wide set of well-established open

source projects implementing different capabilities relevant for AGILE (such as,

for example, IoT protocols and standards or more gateway specific capabilities).

¶ Usability: offer easy to use developer interfaces and recommendation services in

order to address fast prototyping activities and allow non-expert developers to

benefit from core capabilities offered by AGILE.

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 10 of 72

Figure 1: AGILE Software Architecture

The AGILE Software architecture is divided into two main parts:

¶ The full software stack (as shown on Figure 1) that runs on the AGILE Gateway,

i.e. on edge devices that interact with IoT Devices and that will host local IoT

applications on the gateway itself.

¶ The set of components that runs in the cloud offering capabilities for

o managing individual and groups of AGILE Gateways from remote

locations;

o providing cloud based back-end for recommendation and storage services;

o allowing cloud-based offloading of the execution of entire or partial

application workflows.

Focusing on the AGILE Gateway from a software components point of view we can

distinguish the following parts:

¶ Gateway OS

¶ Containerisation infrastructure

¶ Remote Gateway and Fleet Management System

¶ The AGILE API and respective IPC and RPC mechanisms

¶ Containerised AGILE micro-services

¶ AGILE Apps

Gateway OS

At the lower level, there is the operating system running on the gateway itself. The

baseline of the AGILE software stack is an operating system capable of running container

technology (including Docker and Balena). While almost any recent OS configured

accordingly can run Docker containers1, in our recommended approach we provide an

operating system specifically tuned for our use-case. The open-source resinOS has been

designed from Yocto (currently Sumo 2.5) with a continuous stream of updates and

releases after feedback from AGILE development partners, pilot partners and, more

recently, open-callers. It includes a minimal set of required components to reliably

1 We document 5 distinct ways to install and run the AGILE stack including two open-

source Operating Systems and an installation for development purposes in Section 3 and

at http://agile-iot.eu/resources/agile-wiki/

http://agile-iot.eu/resources/agile-wiki/

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 11 of 72

support operation of the Docker and Balena engines in embedded scenarios. It supports a

large number of gateway platforms and provides various management features.

However, the AGILE project also explicitly supports Raspbian based deployments, which

is the most popular Debian-based OS for the Raspberry Pi family of developer boards.

In terms of microprocessor architectures, AGILE targets compatibility with multiple

architectures, with specific focus on ARM (32/64 bit) and x86-64 architectures.

AGILE Containerisation Infrastructure

On top of the operating system a layer offering containerisation functionality allowing to

encapsulate AGILE services and AGILE applications into isolated micro-services.

AGILE relies on Docker based containerisation and Docker-compose based orchestration

of services.

Remote Gateway and Fleet Management System

This layer, partly running directly on the host OS (for the purpose of integrated security,

and access to low-level OS components for upgrades) and partly containerised (for the

purpose of deploying/bootstrapping separate containers during the update process), deals

with all the capabilities needed to allow a remote access to the gateway for management

and for managing a fleet of remote gateways in an efficient and simple way. This includes

all the infrastructural capabilities to securely access the remote gateway and interfaces for

displaying and managing the devices connected to the gateway. The AGILE solution

leverages on capabilities offered by docker-compose remote management features,

resinOS, openVPN, and Resin.io for the remote management interfaces. However, like

the deployment environment/OS itself, other methods (for example, a preferred VPN

solution) can be used instead.

The AGILE API and respective IPC and RPC mechanisms

At the core of AGILE Gateway stays the AGILE API, the main integration layer of

capabilities offered by the AGILE Gateway to developers. The AGILE API is developed

leveraging on an internal BUS, the D-Bus2, the technology used also by operating system

services and applications as an IPC mechanism to coordinate inter-process activities.

Given the availability of different language bindings for D-Bus (different client

implementations) and the fact that most of operating system services and capabilities are

already exposed via D-Bus, this interface has been selected as the most efficient and

effective mechanism to support communication among AGILE services at the Gateway

level.

In parallel to D-Bus, and following the same API structure and definition, a parallel

AGILE RESTful API is made also available inside AGILE gateway exposing AGILE

services through an internal http restful API to be used in the case developers prefer to

avoid D-Bus integration via libraries and instead use a restful API integration approach.

Part of the API functionality can also be made available to external services through the

AGILE policy framework.

AGILE API exposes services implemented by each micro-service comprising the AGILE

framework, as described in the following paragraphs.

Containerised AGILE micro -services

2 See https://en.wikipedia.org/wiki/D-Bus

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 12 of 72

The remaining part of the AGILE framework is developed as a set of micro-services that

are exposed and integrated via the AGILE API (D-Bus and Restful API).

Micro-services of the AGILE framework are:

o Protocols Manager service: this service offers an interface to interact with all the

available IoT device communication protocols available on the AGILE Gateway.

It offers an interface abstracting the way in which each specific protocol status and

device discovery is performed on all available protocols.

o Protocol Adapter services: for each integrated communication protocol (such as

BLE, ZigBee, 802.15.4, etc.) a specific adapter micro-service is deployed. Each

of these micro-services exposes:

o A set of API services and properties common and implemented for every

protocol binding released, aiming at offering a set of common services for

device communication and interaction;

o A set of protocol-specific services and properties necessary to handle

protocol specific capabilities.

Note that Protocol Adapters are containerised, but a one-to-one mapping between

protocols and containers is not required. If an adapter encapsulated code that

implements multiple protocols, this can be exposed in the bus as multiple services

from a single container.

o IoT Device Manager service: these services allow to manage metadata and status

of all available devices registered in the AGILE Gateway. It assigns gateway level

unique identifiers to devices, offers a device registry service, and provides

persistence.

o IoT Device Engine services: an IoT Device Engine service handles the run-time

required to map specific IoT device types to lower layer services exposed at the

protocol level. Although some protocols allow the automatic generation of device

representations based on metadata exposed by the protocol itself (e.g. the BLE

GATT exposes the list of GATT services and characteristics provided by a specific

device using a numeric ID), this is often not the level of abstraction expected by

the user. Therefore, device implementations should be added to the system to

bridge this gap and ñconvertò the high-level Device API to a sequence of lower

level Protocol API calls. In AGILE, each device engine represents a runtime that

handles a set of device types instantiating objects representations of devices as

requested by the device manager. Currently only a Java based device engine is

included is the system, but other engines can also be added. The Java based engine

includes a plug-in mechanism with which device class files can be added to the

system, allowing also IPR protected device implementation to be integrated with

ease.

o IoT Data Management service: it offers capabilities to fetch and store data of

connected devices based on storage policies set up though its API, including

capabilities to handle data retention policies and to store data in encrypted using

asymmetric cryptography.

o Configuration and Recommender services: services supporting the user in the

proper configuration of the gateway and its components, as well as in the

development process. These capabilities are exposed through several user

interfaces as add-on functionalities, but it is also available for application

developers.

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 13 of 72

o Security Components: back-end services for handling identity management and

user authentication, for storing security attributes related to various entities (users,

groups, devices, etc.) present in the AGILE system, and for providing access

policies and corresponding policy decisions.

o Kura components: Kura itself is a platform for building IoT gateways based on

Java OSGi. Integrated in AGILE as a containerised service, it complements

AGILE with additional protocol adapters for industrial field protocols, with

additional IoT cloud platform connectivity options, with UI elements for module

configuration, and with a more industrial oriented workflow based on WIRES

graphical development environment.

o GUI components: The AGILE GUI is also organised as a set of dockerised micro-

services. These services interact with the underlying components using the REST

version of the AGILE API, and optionally with each other through the userôs

browser. Components include a desktop framework, an extensible management

UI, and a JavaScript based Developer UI. For more details, see the following

Section 4.

The AGILE Apps Infrast ructure

The AGILE Gateway also offers part of its resources (computational, storage, network)

specifically to the hosting of local IoT applications that leverage of AGILE Framework

services (accessed via the AGILE API) to interact with all managed devices and to

implement the application specific business logic defined by the developer.

There are two main different types of AGILE IoT applications hosted on the AGILE

Gateway:

¶ Simple IoT workflows, developed using the AGILE developer's user interface (the

Node-Red based UI), and offering developers an easy to use environment to quickly

implement workflows managing device interaction and device data streams via a

JavaScript-based development environment (see node-red description 3 for more

details on this environment);

¶ Full-fledged IoT applications written in any language the developers desires, making

use of AGILE Framework services via the AGILE API (or its mapping in the AGILE

SDK), delivered and installed on the gateway as a container.

3 http://nodered.org/

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 14 of 72

3 Deploying an AGILE Gateway

AGILE supports different use cases from ñmakerò (or hobbyist) development to industrial

deployments, and correspondingly, several ways to deploy AGILE gateways, some more

suitable for rapid-prototyping applications while others more adapt for structured

development and fleet maintenance.

A key project aim has always been to enable SMEs, Start-ups and larger IoT businesses

alike, to build products and services on top of AGILE hardware and software by

facilitating routes to experimentation (e.g. prototype development) and market

(MVP/final product).

Whether users (use-case and application developers, in this context) are looking for a pre-

compiled Raspbian based image for a simple installation using a familiar OS, a full stack

solution supporting a large number of gateway platforms, an installation on a laptop using

our docker-compose based installation process, a large scale remotely managed

deployment (and with their Cloud-based components fully supported), or to build all

AGILE components from source, we provide solutions that facilitate all of the above

deployment processes.

In what follows we detail five of these methods, each suitable for a different use-case.

The up-to-date documentation is also available from the AGILE Wiki.

3.1 Raspbian based standalone gateway

This type of deployment, available only for the Raspberry Pi (2, 3, 3+), is based on pre-

compiled SD images, thus it is useful for those who are looking for the easiest way to try

AGILE on a Raspberry Pi. This method is also useful for those who would like to run

other legacy services next to AGILE, although the ñDocker and docker-compose based

installationò method could be more suitable in case of pre-existing installations.

The deployment process is composed of the following steps:

1. Download a Raspbian based SD image from the AGILE Wiki:

http://agile-iot.eu/wiki/index.php?title=AGILE_SD_images

2. Burn image to microSD (we recommend Etcher.io developed by a project partner).

3. Connect the Pi to LAN. In case of WiFi, edit the wpa_supplicant.conf file directly

on boot partition of the SD card.

4. Insert the SD in the Pi and power it up .

5. The gatewayôs GUI is reachable on http://agilegw.local:8000

(user: agile , password: secret).

6. Open the Device Manager and customise the password.

7. The discovery of the gatewayôs IP address is based on mDNS (also called Bonjour)

protocol. This is by default enabled in most Linux distributions and on OS X, while

in Windows it is only supported if the network is marked as being private. If for

http://agile-iot.eu/wiki/index.php?title=AGILE_SD_images
http://etcher.io/
http://agilegw.local:8000/

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 15 of 72

some reason you LAN does not support mDNS (i.e. `ping agilegw.local` is not

working), further steps are needed to access the GW:

o Find the actual IP of the gateway device. Depending on the configuration of

your (W)LAN, you can get this from your router's management interface or

using the nmap program. You can also get it by simply connecting a screen

directly to the Pi, which displays the IP address at the end of the boot

process.

o Connect with SSH to your gateway with user: pi and password: agileiot

o Update AGILE_HOST variable in the agile configuration (/home/pi/agile-

cli/agile.conf) with an accessible IP address or domain name of the gateway

and restart AGILE by issuing the (agile restart) command.

3.2 Docker and docker-compose based installation

This method is useful for deploying AGILE on any platform not supported by the other

methods, most notably Linux based PCs, and OS X. As such, it is also useful for testing

the AGILE stack without a dedicated gateway (e.g. on a laptop), and it is often used for

development directly on the developerôs machine for components that do not require

specific IoT gateway hardware.

The deployment process is composed of the following steps:

1. Clone the AGILE Stack
git clone https://github.com/Agile - IoT/agile - stack.git

2. Clone the AGILE CLI (Command Line Interface)

git clone https://github.com/Agile - IoT/agile - cli.git

3. Set up the CLI
cd agile - cli

cp agile.config.examples/a gile.config.localhost agile.config

4. Optionally: Customise the configuration, e.g. by setting the AGILE_ARCH to

x86_64

5. Optionally: Install the AGILE CLI
sudo ./agile install

6. Start agile
./agile start

7. Connect to http://localhost:8000 and log in to the UI

(user: agile, password: secret)

8. Open the Device Manager and customise the password.

3.3 ResinOS-based gateway with local management

This deployment is based on resinOS introduced in Section 2. Users can select this option

if a robust OS is required, one of the supported GW platforms is used, but remote Cloud

based management is not needed. AGILE will be running on the gateway machine, but

docker-compose will be run from a local management system. The management system

can be any PC, it is only used to configure the GW at deployment, and later, if necessary,

to update services.

https://github.com/Agile-IoT/agile-stack.git
https://github.com/Agile-IoT/agile-cli.git
http://localhost:8000/

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 16 of 72

Figure 2: AGILE deployment process using resinOS

The deployment process is composed of the following steps:

1. Download resinOS from https://resinos.io/#downloads-raspberrypi or build from

source based on https://resinos.io/docs/custombuild/

2. Optionally: Install resin-cli
npm i - g resin - cli

3. Optionally: Configure the dowloaded SD image (only required if connecting to

WiFi)
resin l ocal configure resin.img

4. Burn image to microSD (we recommend Etcher.io)

5. Clone the agile-stack
git clone https://github.com/agile - iot/agile - stck && cd agile -

stack

6. Configure the stack by creating and editing the .env file
cp .env.example .env

7. After powering on the GW with the microSD card, initialise AGILE
docker - compose up - d

8. To access the gateway, connect to http://resin.local:8000

(user: agile, password: secret)

9. Open the Device Manager and update the password.

3.4 resinOS-based remotely-managed installation

This installation option is useful for large-scale deployments and includes management,

on-going support, monitoring features via secure cloud-based infrastructure, and remote

update features. It is recommended when remote management of groups of AGILE

devices is required (e.g. in enterprise-grade production environments). In the guide

below, we will use a free resin.io account for this. As an alternative, the previous method

https://resinos.io/#downloads-raspberrypi
https://resinos.io/docs/custombuild/
http://etcher.io/
https://github.com/agile-iot/agile-stack
http://resin.local:8000/

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 17 of 72

can be used, connecting the gateway to any self-deployed or openly available OpenVPN

service by customising the gatewayôs OpenVPN configuration.

The deployment and setup steps are the following:

1. Visit https://resin.io and create a free account.

2. Create a new application by giving it a name, selecting the type of device in

which you will deploy the AGILE stack.

3. Initialise this applicationôs backing repository with the AGILE stack

o Clone the agile-stack

Á git clone git@github.com:Agile-IoT/agile-tack.git && cd agile -

stack

o Push the stack into the applicationôs repository
git remote add resin [USER]@git.resin.io:[USER]/ [APPNAME].git

o As the version for Cloud-based deployment of the AGILE stack differs

slightly from our master branch, we need to change to the resin-multi branch

like so:
git checkout resin - multi

o Initialise the remote repository
git push resin - f resin - multi:master

4. Finally, add your first device by clicking 'Add device'. At this point, a

customised version of resinOS image is downloaded. Contrary to the previous

installation method, this one is:

o Connected to an OpenVPN server (in this case hosted on resin.io)

o Receives docker updates directly from resin.io instead of the local

management machine

o Registers in the graphical fleet management UI

5. Burn image to a microSD (we recommend Etcher.io)

The above image can be used to initialise any number of devices, each of which will be

part of the same fleet, and will receive updates as soon as the backing repository is

customised for a specific use or updated with a newer version of the AGILE stack.

3.5 Building and installing from source

We have also taken specific attention to make AGILE easily buildable from source, with

a build process that recreates all the Docker images.

The build process is the following:

1. Clone agile-dev
git clone https://github.com/Agile - IoT/agile - dev.git

2. Configure agile-dev for local build
cd agile - dev/agile - stack

cp .env.example .env

3. Edit .env and change the AGILE_HOST variable to localhost and disable the

DOCKER_HOST variable. If on x86_64, update the AGILE_HOST variable as

well

https://resin.io/
mailto:gi@github.com:Agile-IoT/agile-stack.git
http://etcher.io/
https://github.com/Agile-IoT/agile-dev.git

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 18 of 72

4. Build everything
docker - compose build

5. Start the AGILE framework
docker - compose up - d

6. Connect to http://localhost:8000

7. Open the Device Manager and customise the password.

http://localhot:8000/

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 19 of 72

4 The AGILE Graphical User Interface

The AGILE Graphical User Interface (AGILE GUI) is modularised following the same

dockerised micro-service principle used in the whole framework. This uniformity in the

technological base allows us to minimise prerequisites, making it easier to port AGILE

to different platforms. It also simplifies the management and update of the service

composition, and as a consequence, it allows developers to customise the AGILE stack,

simply using the same principles throughout the framework.

AGILE GUI components, running as services deployed in their respective Docker

containers, are only responsible for user interaction and consume the REST APIs of

underlying AGILE services, thus enforcing a strict separation of constraints. This

separation ensures that the AGILE framework is also operational without the GUI

elements. I.e., GUI based management and interaction is only an option, as it can always

be replaced by other means such as command line tools or remote control through the

exposed APIs.

The AGILE GUI is composed of the following services:

- GUI Desktop Framework (agile-osjs)

- Web based Device Management UI (agile-ui)

- AGILE Developer UI (agile-nodered)

- UI elements of deployed applications

One of these elements serve as single entry-points for the whole user interface: the GUI

Desktop Framework which provides an extensible, unified, and web-based window

manager type integration of the different UI components.

4.1 GUI Desktop Framework

The AGILE GUI Desktop Framework is based on OS.js, a JavaScript desktop

implementation for the web browser with a full-fledged window manager, application

APIs, GUI toolkits, and a filesystem abstraction. It has been built to feel like a traditional

desktop, only with modern web technologies. It features a fully capable Window Manager

and Desktop Environment that takes inspiration from Linux. It supports localisation,

theme customisation, drag-and-drop, authentication and multi-user, group-based

permissions, etc.

It is important to highlight that while we use OS.js for several of its features, our design

decision was to avoid using features of OS.js that would compromise the generality of

other AGILE modules, keeping OS.js an easily replaceable element of the architecture if

one requires a different front-end. In fact, we intentionally limited our use of the extensive

feature-set of OS.js, focusing on the following two key aspects:

- A light-weight in-browser integration of various AGILE user interface elements:

the AGILE architecture allows AGILE components as well as deployed

applications to have their own web-based GUI, each implementing its own

HTML/JavaScript frontend. These frontends are exposed by different dockerised

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 20 of 72

processes, yet they are integrated in a single Window Manager through OS.js

providing the user with a uniform usage experience when dealing with the AGILE

gateway.

- User authentication and single sign-on throughout the AGILE services: through

our authentication plug-in module added to OS.js and through interactions with

the agile-security service, users are automatically authenticated to other parts of

the framework and this information is used in further authorisation processes.

A great feature of this approach is that if a user of the open-source code base decides to

customise the AGILE stack and select a different approach for the main user interface of

its gateway, all of the developed UIs can be used without any major modifications, and

the framework can be changed by replacing the authentication mechanism, of which most

of the functionalities are embodied in the underlying agile-security service, and only a

narrow part is included in the OS.js plugin.

To summarise, the main features and characteristics of OS.js we use are:

¶ An open-source project with active development

¶ Desktop and Window Manager built to feel familiar to most users

¶ Works in any modern browser

¶ Server is deployable on any platform

¶ Can be built to run entirely in-browser without any server

¶ Dependency-free JavaScript frontend

¶ Easy to use APIs

¶ Customisable and easy to extend with custom code and modules

¶ Supports multi-user environments and authentication

¶ Supports adding of packages via external repositories

¶ Follows industry standard style guides

For completeness, OS.js has several other features that are not currently used but are

possibly useful in the future, such as:

¶ Virtual File System - Store your files across many different storage/cloud

providers

¶ Drag-and-drop support between applications

¶ Supports sessions so that the user can reload workspaces on any computer

¶ Localisation and translations support

¶ Comes with a small application suite

¶ Comes with all the tools necessary to build custom applications

¶ Client is written in Strict Mode JavaScript and uses ECMAScript 5.1 standards

¶ Comes with Google API JavaScript Support

¶ Comes with Windows Live API JavaScript Support

¶ Google Drive support

¶ Dropbox support

¶ OneDrive support

The code for the AGILE GUI Framework is available in the agile-osjs repository.

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 21 of 72

The following screenshots illustrate how the Desktop Framework looks inside the

browser:

Figure 3: single sign-on mechanism supporting various authentication types

Figure 4: Screenshot of OS.js with the Data Visualisation UI and the Developer UI

4.2 Device Management

We provide the following means of managing devices (gateways and IoT devices) on

AGILE:

¶ Management of a gateway locally, possible through local access to devices e.g.

on the OS.js interface which was demonstrated in previous deliverables.

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 22 of 72

¶ Management of devices, such as sensors and actuators, connected to the

gateway, possible both directly from AGILE dedicated microservices (access to

which is documented later in this report) and delivered through AGILE User

Interfaces also previously documented.

¶ Remote management of gateway devices, where one or more AGILE IoT

gateways can be deployed, controlled remotely, updated or otherwise

maintained.

The above deployment processes that offer separate management options are also

described and documented in our AGILE Wiki:

http://agile-iot.eu/wiki/index.php?title=Five_easy_ways_to_install_AGILE_(running_the_default_stack)

In this section, we are documenting remote access to devices as part of the managed

resinOS deployment of AGILE gateways. A critical development item since the previous

deliverable was to enable the provisioning of AGILE microservices (currently spread

across over 10 microservices) in a controlled manner.

Figure 5: Realtime status of microservices on single gateway device

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 23 of 72

The resin.io platform, as well as resinOS (which were introduced as the gateway

management solution and underlying Operating System respectively) has been fully

integrated with the AGILE gateway to support multi-container deployments.

Although multi-container definitions were possible through Docker Compose (Docker

Compose is a tool for defining and running multi-container Docker applications), work

had to be done to ensure the remote gateway management service would support this

configuration. We have released an Open Source version of Resin.io (with resinOS

already having an Open Source license)4.

As was described in Section 2, and to further clarify, the above does not refer to code that

is on the Gateway itself. All of the components on the AGILE gateway that regard the

Operating System, container technology and other low-levels of the stack, are fully Open

Source and released on public repositories. The enterprise-level option for deployment

(through a managed version of resinOS) naturally incurs costs for cloud-based

infrastructure from the provider, resin.io and the company uses a freemium model with

varying subscription levels based on devices. Those using the AGILE stack can avoid

such costs either by deploying resinOS with their own cloud-based remote management

interface and VPN facility (with open VPN currently supported), or by using any of the

other deployment methods fully documented in the AGILE Wiki (which includes an

unmanaged version of resinOS as well as a version on a different flavour of Linux5).

In terms of enterprise management features, the new OS version (v2.19.0) that the AGILE

stack is deployed on (and currently supported on Raspberry Pi 3 and Intel NUC, plus the

majority of the ARM and x86 or x86-64 boards) is compatible with AGILE.

This enables remote management of fleets of devices, currently with the below

functionality available freely to anyone deploying AGILE on multiple devices.

The work is based on a new set of interfaces which takes AGILEôs stack requirements

into consideration and has been built from the ground up to support multiple

microservices as part of the same monitored deployment flow.

It is worth noting that the only required steps are the creation of a resin account, the

download of the resinOS image, and the initial deployment of the stack following our

steps documented in the agile-stack repository.

4 https://resin.io/blog/open-source-resin-io-progress-and-next-steps/
5 More information about this standalone version of the Open Source operating system

can be found here: https://docs.resin.io/reference/OS/overview/2.x/#variants-of-resinos

https://docs.resin.io/reference/OS/overview/2.x/#variants-of-resinos

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 24 of 72

Figure 6: Device provisioning based on existing configuration

Figure 7: Device statistics and health information

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 25 of 72

Figure 8: Device settings propagate across fleet

H2020-688088ðAGILE Adaptive Gateways for dIverse muLtiple Environments

© D3.3 Application Interfaces (Gateway, Data Management & Developerôs Interface) ï final integration

ï 3rd AGILE Release ï Full Software Stack Page 26 of 72

Figure 9: Deployments tracked through a CI (Continuous Integration) process

Figure 10: Remote device management incl. exposing AGILE UI link over HTTPS

